
1 © 2014, 2022 IBM CorporationRexx Language Coding Techniques

IBM zSystems
IBM Z

Rexx Language Coding Techniques

Part 2

Tracy Dean

IBM

June 2022

3 © 2014, 2022 IBM CorporationRexx Language Coding Techniques

IBM zSystems

Agenda

➢ Part 1

• Rexx products

• External environments and interfaces

• Instructions, functions, and subroutines

• Variable visibility

• Parsing

➢ Part 2

• Rexx compound variables vs. data stack

• I/O

• Troubleshooting

• Programming style and techniques

• Other Rexx products and projects

➢ Additional material included in hand-out, not covered in session

4 © 2014, 2022 IBM CorporationRexx Language Coding Techniques

IBM zSystems

Compound Variables and Data Stack

5 © 2014, 2022 IBM CorporationRexx Language Coding Techniques

IBM zSystems

What is a Compound Variable?

➢ A way to reference a collection of related values

• Also called a stem variable or stem array

➢ Variable name is stem followed by zero or more tails

• stem must be simple variable ending in a period

• tail must be simple variable or decimal integer

• Multiple tails are separated by periods

➢ Each tail variable is replaced by its value

• Default value of stem and tail is the variable names used for stem and tail

• Each tail references a dimension of the collection

➢ The resulting derived name is used to access a specific value from the collection

➢ Tails which are variables are replaced by their respective values

• If no value assigned, takes on the uppercase value of the variable name

day.1 stem: DAY.
tail: 1

array.j stem: ARRAY.
tail: J

name = ‘Smith’
phone = 12345

employee.name.phone stem: EMPLOYEE.
tail: Smith.12345

6 © 2014, 2022 IBM CorporationRexx Language Coding Techniques

IBM zSystems

Compound Variable Values

➢ Initializing a stem to some value automatically initializes every compound variable
with the same stem to the same value

Say month.12 MONTH.12
month. = ‘Unknown’
month.3 = ‘March’
month.6 = ‘June’

Say month.12 Unknown
monthnum = 3
Say month.monthnum March

➢ Easy way to reset the values of compound variables

month. = ‘’
Say month.6 ‘’

➢ Drop instruction can be used to restore compound variables to their uninitialized state

Drop month.
Say month.6 MONTH.6 • Useful in memory constrained

environments
• Avoids “No Value” errors

7 © 2014, 2022 IBM CorporationRexx Language Coding Techniques

IBM zSystems

Processing Compound Variables

➢ Compound variables provide the ability to process one-dimensional arrays

• Use a numeric value for the tail

• Good practice - store the number of array entries in the compound variable with a tail of

0 (zero)

• Often processed in a Do loop using the tail as the loop control variable

invitee.0 = 10

Do j = 1 to invitee.0

Say ‘Enter the name for invitee’ j

Parse Pull invitee.j

End

➢ Stems can be used with I/O functions to read data from and write data to a file on
z/VM or data set on z/OS

• Stream I/O

• EXECIO

• PIPE

➢ Stems can also be used with the external function OUTTRAP (z/OS) or PIPE (z/VM)
to capture output from commands

8 © 2014, 2022 IBM CorporationRexx Language Coding Techniques

IBM zSystems

Processing Compound Variables . . .

➢ The tail for a compound variable can be used as an index to related data

➢ The tail (index) and data can contain blanks

➢ Given the following input data:

----+----1----+----2----+----3----+----4----+
Employee# Name Location
A1234 M Cowlishaw United Kingdom
B5678 T Dean Portland
C9012 J Smith Austin
. . .

➢ The unique employee number value can be used as the tail of compound variables that hold the

rest of the person’s data

'PIPE < EMPLOYEE INFO A | STEM rec.'

Do j = 2 To rec.0

Parse Var rec.j =1 empnum name.empnum =25 location.empnum

End j

Say 'Which employee number do you want to learn about?'

Parse Upper Pull empnum

Say 'The name of employee' empnum 'is' Strip(name.empnum)'.'

Say 'The location of employee' empnum 'is' Strip(location.empnum)'.’

Exit

9 © 2014, 2022 IBM CorporationRexx Language Coding Techniques

IBM zSystems

What is a Data Stack?

➢ An expandable data structure used to temporarily hold data items (elements) until
needed

➢ When an element is needed it is always removed from the top of the stack

➢ A new element can be added either to the top (LIFO) or the bottom (FIFO) of the
stack

• FIFO stack is often called a queue

LIFO

Stack

FIFO

Stack

(Queue)

10 © 2014, 2022 IBM CorporationRexx Language Coding Techniques

IBM zSystems

Manipulating the Data Stack

➢ 3 basic Rexx instructions

• Push - put one element on the top of the stack

elemone = ‘new top element’
Push elemone

• Queue - put one element on the bottom of the stack

elemtwo = ‘new bottom element’
Queue elemtwo

• Parse Pull - remove an element from the (top) of the stack

Parse Pull nextthing

• Outcome:

nextthing → ‘new top element’

➢ 1 Rexx function

• Queued() - returns the number of elements in the stack

num_elems = Queued()

11 © 2014, 2022 IBM CorporationRexx Language Coding Techniques

IBM zSystems

Why Use the Data Stack?

➢ Pass a large or unknown number of arguments between EXECs or
routines

➢ To store a large number of data items for later use

• Size may be unpredictable or unknown

➢ Specify commands to be run when the EXEC ends

• Elements left on the data stack when an EXEC ends are treated as
commands

Queue “TSOLIB RESET QUIET”

Queue “ALLOC FI(ISPLLIB) DA(‘ISP.SISPLOAD’
'SYS1.DFQLLIB‘) SHR REUSE”

Queue “TSOLIB ACTIVATE FILE(ISPLLIB) QUIET”

Queue “ISPF”

➢ Pass responses to an interactive command that runs when the
EXEC ends

• Example: z/VM DDR program

12 © 2014, 2022 IBM CorporationRexx Language Coding Techniques

IBM zSystems

Quick Example of Processing the Data Stack

➢ A receiving (or called) program collects data from the stack

• Passed from sending/calling program

/* Sample stack processing */

Address Command

element.0 = Queued()

Do i = 1 To element.0

Parse Pull element.i

…

End

…

Full parsing capability

14 © 2014, 2022 IBM CorporationRexx Language Coding Techniques

IBM zSystems

Using Buffers in the Data Stack

➢ An EXEC can create a buffer in a data stack using the Makebuf
instruction

➢ All elements added after a Makebuf instruction are placed in the
new buffer

• Makebuf changes where the Queue instruction inserts new elements
• Remember Queue inserts at the “bottom” of the stack (or buffer)

15 © 2014, 2022 IBM CorporationRexx Language Coding Techniques

IBM zSystems

Using Buffers in the Data Stack . . .

➢ An EXEC can use Makebuf to create multiple buffers in the data stack

• Makebuf returns in the RC variable the number identifying the newly created

buffer

• Buffer 0 is the main stack so the first Makebuf creates Buffer 1

➢ Dropbuf instruction is used to remove a buffer from the data stack

• Allows an EXEC to easily remove all items in a buffer that is no longer needed

• A buffer number can be specified with Dropbuf to identify the buffer to remove

• Default is to remove the most recently created buffer

• Dropbuf 0 results in an empty data stack (use with caution)

➢ z/OS only

• The Qbuf instruction is used to find out how many buffers have been created

• The Qelem instruction is used to find out the number of elements in the most

recently created buffer

16 © 2014, 2022 IBM CorporationRexx Language Coding Techniques

IBM zSystems

Using Buffers in the Data Stack . . .

➢ Important notes

• When the buffer is empty

• Next Pull automatically pulls the next item on the stack

• Technically that item was in the next buffer

• No error or indication

• Creating a buffer only changes the insert point of a FIFO stack

• Items are still pulled from the top of the stack/buffer

• Keep track of where you are in buffers within the stack

• Use Queued() to find the total number of elements in the stack

• To remove a buffer that still contains elements

• Issue Dropbuf

• The next request to pull an element will move

▪ To the next buffer if there is one (including buffer 0)

▪ To the external input queue if the stack (all buffers) are empty

17 © 2014, 2022 IBM CorporationRexx Language Coding Techniques

IBM zSystems

Protecting Elements in the Data Stack – z/OS Only

➢ Rexx code can use the stack, but protect itself from inadvertently
removing someone else’s data stack elements

• Create a new private data stack using the NEWSTACK instruction

➢ All elements added after a NEWSTACK instruction are placed in the
new data stack

• Elements on the original data stack cannot be accessed by an EXEC or any
called routines until the new stack is removed (not just emptied)

• When there are no more elements in the new data stack, information is taken
from the terminal (not the original data stack)

18 © 2014, 2022 IBM CorporationRexx Language Coding Techniques

IBM zSystems

Protecting Elements in the Data Stack - z/OS Only

➢ DELSTACK - removes a data stack

• Removes the most recently created data stack

• Including all remaining elements in the stack

• Caution

• If no stack previously created with NEWSTACK, then DELSTACK

removes all the elements from the original stack

➢ QSTACK - returns the number of data stacks

• Including the original stack

• Puts the value in the variable RC

➢ Note: For z/OS, the QUEUED() function returns the number of

elements in the current data stack

19 © 2014, 2022 IBM CorporationRexx Language Coding Techniques

IBM zSystems

Data Stack vs Buffers

➢ Data Stack

• Advantages

• Protects data in the original stack

▪ Never defaults back to the “previous” stack in the chain

▪ Must specifically delete current stack to move to previous stack

▪ Can easily request terminal input if also have items in the stack

▪ Just create a new stack with nothing on it and issue “Pull”

• Disadvantages

• Only available on z/OS

▪ z/VM must issue “Parse External” to request terminal input if data is in

the stack

20 © 2014, 2022 IBM CorporationRexx Language Coding Techniques

IBM zSystems

Data Stack vs Buffers

➢ Buffers

• Advantages

• z/VM and z/OS supported

• Create a “stack” on top of the existing stack for new list of items

• Ability to insert at the bottom of the new “stack”

• Use “QElem” (z/OS only) to keep track of how many items in this

buffer

• Disadvantages

• No guaranteed protection of previous stack in the chain

▪ If current stack is empty, will proceed to next one automatically

21 © 2014, 2022 IBM CorporationRexx Language Coding Techniques

IBM zSystems

Compound Variables vs Data Stack

➢ Compound Variables

• Advantages

• Basically variables - Rexx will manage them like other variables

• Only one step required to assign a value

• Provide opportunities for clever and imaginative processing

• Disadvantages

• Can not be used to pass data between external routines

➢ Conclusion

• Try to use compound variables whenever appropriate

• They are simpler

22 © 2014, 2022 IBM CorporationRexx Language Coding Techniques

IBM zSystems

Compound Variables vs Data Stack

➢ Data Stack

• Advantages

• Can be used to pass data to external routines

• Able to specify commands to be run when the EXEC ends

• Can provide response(s) to an interactive command that runs when

the EXEC ends

• Disadvantages

• Program logic required for stack management

• Processing needs 2 steps

▪ Take data from input source and store in stack

▪ Read from stack into variables

• Stack attributes and instructions are operating system dependent

23 © 2014, 2022 IBM CorporationRexx Language Coding Techniques

IBM zSystems

I/O and Troubleshooting

24 © 2014, 2022 IBM CorporationRexx Language Coding Techniques

IBM zSystems

EXECIO Command – z/OS

➢ A TSO/E Rexx command that provides record-based
processing

• Used to read and write records from/to a z/OS sequential data set
or z/OS partitioned data set member

• Requires a DDNAME to be specified

• Use ALLOC command to allocate data set or member to a DD

➢ Records can be read into or written from compound variables
or the data stack

➢ Can also be used to:

• Open a data set without reading or writing any records

• Empty a data set

• Copy records from one data set to another

• Add records to the end of a sequential data set

• Update data in a data set, one record at a time

25 © 2014, 2022 IBM CorporationRexx Language Coding Techniques

IBM zSystems

EXECIO Command – z/VM

➢ CMS EXECIO command provides record-based processing

➢ Recommend using CMS Pipelines (PIPE command) instead

• Simpler to use

‘EXECIO * DISKR EMPLOYEE INFO A (STEM REC. FINIS’

vs
‘PIPE < EMPLOYEE INFO A | STEM rec.’

➢ PIPEs has much more function

26 © 2014, 2022 IBM CorporationRexx Language Coding Techniques

IBM zSystems

Special Variables

➢ RC (or rc) variable

• Return code from external commands and special Rexx

instructions

➢ Result variable

• Value of an expression returned by a called subroutine

27 © 2014, 2022 IBM CorporationRexx Language Coding Techniques

IBM zSystems

Troubleshooting – Condition Trapping

➢ Signal On and Call On instructions

• Used to trap exception conditions

• Signal On goes to label and does not return

• Call On goes to label and returns

➢ Syntax:

▪ Condition types:
– ERROR - error upon return (positive return code)

– FAILURE - failure upon return (negative return code)

– HALT - an external attempt was made to interrupt and end execution

– NOVALUE - attempt was made to use an uninitialized variable

– SYNTAX - language processing error found during execution

– NOTREADY - z/VM only. Error during input or output operation

28 © 2014, 2022 IBM CorporationRexx Language Coding Techniques

IBM zSystems

Troubleshooting – Condition Trapping. . .

➢ Good practice to enable condition handling to process unexpected errors

• Specifically Signal On NoValue Name error-routine

➢ Use Rexx provided functions and variables to identify and report on exceptions

• CONDITION function – returns information on the current condition

• Name and description of the current condition

• Indication of whether the condition was trapped by SIGNAL or CALL

• Status of the current trapped condition

• RC variable

• For ERROR and FAILURE - contains the instruction and return code

• For SYNTAX - contains the syntax error number

• SIGL variable – line number of the clause that caused the condition

• ERRORTEXT function – returns Rexx error message for a SYNTAX condition
Say ErrorText(rc)

• SOURCELINE function – returns a line of source from the Rexx EXEC
Say Sourceline(sigl)

29 © 2014, 2022 IBM CorporationRexx Language Coding Techniques

IBM zSystems

Troubleshooting – Trace Facility

➢ Provides powerful debugging capabilities

• Displays the outcome of expression evaluations

• Displays the variable values

• Follows the execution path

• Interactively pauses execution and runs Rexx statements

➢ Activated using the Trace instruction and function

➢ Syntax:

30 © 2014, 2022 IBM CorporationRexx Language Coding Techniques

IBM zSystems

Troubleshooting – Trace Facility . . .

➢ Code example:

A = 1

B = 2

C = 3

D = 4

Trace R

If (A > B) | (C < 2 * D) Then

Say 'At least one expression was true.'

Else

Say 'Neither expression was true.’

➢ Output:

7 *-* If (A > B) | (C < 2 * D)

>>> "1"

- Then

8 *-* Say 'At least one expression was true.'

>>> "At least one expression was true."

At least one expression was true.

Trace

Results

31 © 2014, 2022 IBM CorporationRexx Language Coding Techniques

IBM zSystems

Troubleshooting – Trace Facility . . .

➢ Code example:

A = 1
B = 2
C = 3
D = 4
Trace I
If (A > B) | (C < 2 * D) Then
Say 'At least one expression was true.'

Else
Say 'Neither expression was true.'

➢ Result:

6 *-* If (A > B) | (C < 2 * D)
>V> "1"
>V> "2"
>O> "0"
>V> "3"
>L> "2"
>V> "4"
>O> "8"
>O> "1"
>O> "1"
- Then

7 *-* Say 'At least one expression was true.‘
>L> "At least one expression was true."

At least one expression was true.

Trace

Intermediates

32 © 2014, 2022 IBM CorporationRexx Language Coding Techniques

IBM zSystems

Troubleshooting – Trace Facility . . .

➢ Interactive trace provides additional debugging power

• Pause execution at specified points

• Insert instructions

• Re-execute the previous instruction

• Continue to the next traced instruction

• Change or terminate interactive tracing

• Issue Trace instruction with desired parameters at next prompt

➢ Starting interactive trace

• ? option with the TRACE instruction

• In TSO, use EXECUTIL TS command (Trace Start)

• Code in your Rexx EXEC

• Issue from the command line to debug next Rexx EXEC run

• Cause an attention interrupt and enter TS

33 © 2014, 2022 IBM CorporationRexx Language Coding Techniques

IBM zSystems

Programming Style and Techniques

➢ Be consistent with your style

• Helps others read and maintain your code

• Having style rules will make the job of coding easier

➢ Indentation

• Improves readability

• Helps identify unbalanced or incomplete structures

• Do - End pairs

➢ Comments

• Provide them!

• Choices:

• In blocks

• To the right of the code

34 © 2014, 2022 IBM CorporationRexx Language Coding Techniques

IBM zSystems

Programming Style and Techniques . . .

➢ Capitalization

• Can improve readability

• Suggestions

• Use all lowercase for variables

• Use mixed case (capitalize the first letter) for keywords, labels, calls
to internal subroutines

• Use upper case for calls to external routines (commands)

➢ Variable names

• Try to use meaningful names

• Helps understanding and readability

• Avoid 1 character names

• Easy to type but difficult to manage and understand

• Exception – indices to compound variables

• Avoid ending names with letter O or lowercase L

• Hard to distinguish between numbers 0 and 1

35 © 2014, 2022 IBM CorporationRexx Language Coding Techniques

IBM zSystems

Programming Style and Techniques . . .

➢ Comparisons

• Rexx supports exact (e.g. “==“) and inexact (e.g. “=“) operators

• Only use exact operators when appropriate
if action == ‘SAVE’ then …

• Above comparison will fail if variable action is "SAVE "

• Avoid using non-standard NOT characters: “¬” and “/”

• Portability problem when transferring code to an ASCII platform

• Use “\=“, or less commonly used “\>“ “\<=

Extra blank

36 © 2014, 2022 IBM CorporationRexx Language Coding Techniques

IBM zSystems

Programming Style and Techniques . . .

➢ Semicolons

• Can be used to combine multiple statements in one line

• DON’T – detracts from readability

• Languages like C and PL/I require a “;” to terminate a line

• Can also be done in Rexx

• DON’T – doubles internal logic statement count for interpreted Rexx

➢ Conditions

• For complex statements, Rexx evaluates all Boolean expressions, even if
first fails:

If 1 = 2 & 3 = 4 & 5 = 5 Then Say 'Impossible‘

• Divide-by-zero can still occur if a=0

If a \= 0 & b/a > 1 Then ...

• Can be avoided by nesting IF statements:

If a \= 0 Then

If b/a > 1 Then ...

Rexx error

37 © 2014, 2022 IBM CorporationRexx Language Coding Techniques

IBM zSystems

Programming Style and Techniques . . .

➢ Literals

• Important to use literals where appropriate

• For example: external commands

• Lazy programming can lead to unfortunate results

• For uninitialized variables: value=name
control errors cancel

• This usually works

▪ Breaks if any of the 3 words is a variable with value already assigned

• Also a performance cost for unnecessary variable lookups

▪ Up to 20%+ more CPU

• Instead enclose literals in quotation marks
‘CONTROL ERRORS CANCEL’

38 © 2014, 2022 IBM CorporationRexx Language Coding Techniques

IBM zSystems

Programming Style and Techniques . . .

➢ External commands

• Best practices

• Enclose in quotation marks

• Use uppercase

• Fully spell out the command

▪ Don’t assume any abbreviations that may not be present if the EXEC is

moved to another system

▪ Preface with the external environment as needed

39 © 2014, 2022 IBM CorporationRexx Language Coding Techniques

IBM zSystems

Related Programs

40 © 2014, 2022 IBM CorporationRexx Language Coding Techniques

IBM zSystems

CMS and TSO Pipelines

➢ A powerful method of processing or manipulating data

➢ Can be called within Rexx programs

➢ A collection of data processing elements connected in a
series

• Output of one element becomes the input to the next element

• For example, on z/VM

’PIPE CP QUERY DASD | STEM dasd.‘

• Issues the CP command QUERY DASD

• Response is written into the pipeline

• Next stage (STEM) receives the input and places it into the stem
variable “dasd”, setting dasd.0 to the number of lines of data

➢ Included in all current releases of z/VM

➢ Available as a separate product for TSO

• Batchpipes (5655-D45)

41 © 2014, 2022 IBM CorporationRexx Language Coding Techniques

IBM zSystems

Open Object REXX

➢ Open Object REXX is available via open source community

• Runs on Linux on Z

• Many other (distributed) platforms

➢ www.oorexx.org

• Managed by Rexx Language Association

➢ 99% compatible with other IBM Z Rexx programs

➢ Comparison of PERL and OOREXX

• Informal testing with SLES on memory and CPU constrained system

• OOREXX is much faster!

• Memory footprint of OOREXX similar to PERL with several modules

loaded

42 © 2014, 2022 IBM CorporationRexx Language Coding Techniques

IBM zSystems

NetRexx

➢ An object oriented Rexx for the Java Virtual Machine (JVM)

• Write in Rexx (or Rexx-like)

• Compiler converts to Java source statements and bytecode

➢ Available via open source community since 2011

➢ netrexx.org

• Managed by Rexx Language Association

43 © 2014, 2022 IBM CorporationRexx Language Coding Techniques

IBM zSystems

Additional Information

➢ IBM Rexx Website
https://www.ibm.com/products/compiler-and-library-for-rexx-on-ibm-z

https://www.ibm.com/products/compiler-and-library-for-rexx-on-ibm-z

44 © 2014, 2022 IBM CorporationRexx Language Coding Techniques

IBM zSystems

Summary

➢ Part 1

• Rexx products

• External environments and interfaces

• Instructions, functions, and subroutines

• Variable visibility

• Parsing

➢ Part 2

• Rexx compound variables vs. data stack

• I/O

• Troubleshooting

• Programming style and techniques

• Other Rexx products and projects

➢ Additional material included in hand-out, not covered in
session

45 © 2014, 2022 IBM CorporationRexx Language Coding Techniques

IBM zSystems

Tracy Dean

Product Manager, IMS Tools and z/VM Tools

tld1@us.ibm.com

46 © 2014, 2022 IBM CorporationRexx Language Coding Techniques

IBM zSystems

Thank You

Merci

Grazie

Gracias

Obrigado

Danke

Japanese

English

French

Russian

GermanItalian

Spanish

Brazilian Portuguese

Arabic

Traditional Chinese

Simplified Chinese

Tamil

Thai

Korean
Hindi

Ndzi khense ngopfu
Tsonga

Ke a leboha
Tswana

