
Discover the variety of
Container technologies
on IBM Z and LinuxONE

Wilhelm Mild
IBM Executive IT Architect
IBM R & D Lab Germany

2© Copyright IBM Corporation 2017. Technical University/Symposia materials may not be reproduced in whole or in

part without the prior written permission of IBM.

Agenda

➢ Container technologies and Ecosystem

➢ Container Orchestration

P9 P10 P11P4 P5

LPAR1

z/OS or

z/TPF or

z/VSE or

Linux

LPAR2

Linux

LPAR3

IBM Z

LPAR

virtualization

(PR/SM or DPM)

Real

CPUs*

(cores)

Logical

CPUs

(cores)

Virtual

CPUs (cores)

IBM Z Virtualization and Container options

Server virtualization. There are typically

dozens or hundreds of Linux servers in a

LPAR virtualized using z/VM or KVM or SSC.

P1 – P11 are Central Processor Units (CPU -> core) or Integrated Facility for Linux (IFL) Processors (IFL -> core)

* - One shared Pool of cores per System only

Note: - LPARs can be managed by traditional PR/SM in IBM Z and additional with Dynamic Partition Manager (DPM) in LinuxONE

L
in

u
x

L
in

u
x

L
in

u
x

L
in

u
x

L
in

u
x

L
in

u
x

P1 P2 P3

Application isolation.

There are typically thousands of

Containers in Linux on IBM Z.

Secure

Service

Container

(SSC)

- Hyper

Protect

Virtual

Servers

zCX

LPAR4

z/VM

LinuxLinux

Linux
Linux

LPAR5

P6 P7 P8

Server virtualization
KVM

Red Hat OpenShift (OCP)

OCP

worker
OCP

master

(control

planes)

CoreOS CoreOS

Red Hat OpenShift is an Enterprise

grade Kubernetes environment. It can

be installed in a z/VM environment.

z/VM

OCP

worker

CoreOS

© Copyright IBM Corporation 2020

5© Copyright IBM Corporation 2017. Technical University/Symposia materials may not be reproduced in whole or in

part without the prior written permission of IBM.

Containers in Linux – for application isolation

• linuxcontainers.org is the umbrella project behind Linux Containers (LXC), Linux Container

management (LXD), Linux Container FileSystem (LXCFS) and Linux cgroup manager daemon

(CGManager).

• The goal was to offer a Linux distro and vendor neutral environment for the development of

Linux container technologies.

• The main focus is system containers, that offer an environment as close as possible as the one

you'd get from a VM but without the overhead that comes with running a separate kernel and

simulating all the hardware.

This is achieved through a combination of kernel security features such as namespaces,

mandatory access control and control groups (cgroups).

• Container goals and characteristics:

➢Isolated application environments within a Linux OS instance

➢Each container has its own, different address (name) space but same kernel

➢Serve a single task

➢Self contained set of files for applications

➢Startup time and efficiency compare to native execution

https://linuxcontainers.org/

6© Copyright IBM Corporation 2017. Technical University/Symposia materials may not be reproduced in whole or in

part without the prior written permission of IBM.

Linux control groups and namespaces are used for isolation

⚫ To simplify:

− “cgroups” will allocate & control resources in your container

⚫ CPU

⚫ Memory

⚫ Disk I/O throughput

− “namespace” will isolate

⚫ process IDs

⚫ Hostnames

⚫ User IDs

⚫ network access

⚫ interprocess communication

⚫ filesystems

Kernel

Linux Guest

cgroups

Kernel

Namespaces

Container 1

App

cgroups

Kernel

Namespaces

Container 2

App

App App App

7© Copyright IBM Corporation 2017. Technical University/Symposia materials may not be reproduced in whole or in

part without the prior written permission of IBM.

Linux Containers vs. virtual server

Kernel

Container 1

SUSE - Base Image

ADD VIM - Image

ADD APACHE

Container 2

UBUNTU – Base

Image

ADD VIM - Image

ADD MySQL

Virtualization, usually provides a high level of isolation and security as all communication between the

guest and host is through the hypervisor.

➢ It is also usually slower and incurs some overhead due to the infrastructure emulation.

Containers, reduce the virtualization overhead, the level of virtualization called "container virtualization"

was introduced which allows to run multiple isolated user space instances on the same kernel.

➢ Containers is a layered approach and uses copy-on-write filesystems

https://en.wikipedia.org/wiki/User_space

8© Copyright IBM Corporation 2017. Technical University/Symposia materials may not be reproduced in whole or in

part without the prior written permission of IBM.

Docker and Containers

In 2014, Docker teamed with Canonical, Google, Red Hat, and Parallels to create a standardized

open-source program libcontainer that allows containers to work within Linux namespaces and

control groups (cgroups) without needing administrator access. Docker initially used lxc as

underlying technology to communicate with the kernel, today, it uses the libcontainer library.

Docker is one implementation of Linux containers and their management

➢ Open, portable, light-weight run-time and packaging tool

➢ Container in standard operating environment and delivery vehicle for

applications with wildly different requirements

➢ Much faster to spin-up and efficient to run than a VM

➢ Isolated from each other

➢ Easily build and ship complex application, without worrying about infrastructure

differences or interference from other software stacks

➢ Quickly and reliably deploy and run applications on many infrastructures

➢ Essential for horizontally scaling apps on the cloud

https://github.com/docker/libcontainer

IBM Secure Service Container
Appliance

IBM Secure Service Container (SSC) – Hyper Protect services everywhere

Management Backend

Base Operating System

Application Interfaces

Container Environment

M
a
n

a
g

e
m

e
n

t
U

I
/
R

E
S

T
 A

P
I

10

Deploy your container workload in a

highly secure environment

• SSC is a special LPAR and provides

simplified mechanism for fast deployment

and management of packaged solution

• Provides tamper protection during installation

and runtime

• Ensures confidentiality of data and code

-at flight and at rest

• Management provided via Remote APIs

(RESTful) and web interfaces only

• Enables containers to be delivered via

distribution channels

Enterprise IBM Hyper protect services based on
Containers in SSC

IBM Cloud Hyper Protect Crypto Services

Infuse the highest level of security with data

encryption and key management capabilities into

your apps. http://ibm.biz/hpcrypto

IBM Cloud Hyper Protect DBaaS

Retain your data in a fully encrypted

client database without the need for

specialized skills.

http://ibm.biz/hpdbaas

IBM Blockchain Platform

Deploy Blockchain on IBM Cloud in a

Hyper Secure environment on LinuxONE.

https://www.ibm.com/blockchain/platform

Hyper secure services

are based on IBM Secure

Service Containers,

a special type of Hyper

protect LPAR in IBM Z.

IBM Hyper Protect Virtual Servers

Create Linux VMs with own public ssh

key to maintain exclusive access to

code and data

http://ibm.biz/hpvserv

https://www.ibm.com/cloud/hyper-protect-services

IBM Db2® Analytics Accelerator is a high-performance

component tightly integrated with Db2 for z/OS® for high-speed

processing for complex Db2 queries and analytic workloads.

https://www.ibm.com/products/db2-analytics-accelerator

http://ibm.biz/hpcrypto
http://ibm.biz/hpdbaas
https://www.ibm.com/blockchain/platform
http://ibm.biz/hpvserv
https://www.ibm.com/cloud/hyper-protect-services
https://www.ibm.com/products/db2-analytics-accelerator

14© Copyright IBM Corporation 2017. Technical University/Symposia materials may not be reproduced in whole or in

part without the prior written permission of IBM.

Application isolation is long tradition in IBM Z

z/OS and Linux virtualization

IBM z System Infrastructure

LPAR

Hypervisor

z/OS

z/OS

M
Q

2
 A

d
d
r

S
p

a
c
e

B
a
tc

h
 A

d
d
r

S
p
a
c
e

D
B

2

A
d
d
r

S
p

a
c
e

M
Q

2
 A

d
d
r

S
p

a
c
e

M
Q

1
 A

d
d
r

S
p
a
c
e

B
a

tc
h

 A
d
d
r

S
p

a
c
e

D
B

2

A
d
d
r

S
p
a
c
e

App1

App1’

App3

App2

App2’

App

4

Linux1 Linux2z/OS

Docker Container deployment in Linux

Virtualization:
➢ Infrastructure oriented

➢ Virtual server resource management

➢ Several applications per server

➢ Isolation per virtual server

IBM z System Infrastructure

Linux Guest 1

Docker Engine

Bins/Libs

App1

Bins/Libs

App2

Bins/Libs

App3

Linux guest 2

LPAR

Hypervisor

Container Engine

Bins/Libs

App1

Container

Container
Container

Container

Containers:
➢ Service oriented

➢ Application management via container

➢ Solution decomposed into several units

➢ Dynamic, isolation in container

Bins/Libs

App2

Container

M
Q

1
 A

d
d
r

S
p
a
c
e

z
/O

S
 C

o
n

ta
in

e
r

E
x
te

n
s
io

n

Container

environment

15© Copyright IBM Corporation 2017. Technical University/Symposia materials may not be reproduced in whole or in

part without the prior written permission of IBM.

Container in IBM z/OS Version 2 Release 4

➢ z/OS V2.4 introduced IBM z/OS Container Extensions,

➢ execute Linux® on IBM Z Docker container in z/OS,

alongside existing z/OS applications and data.

➢ z/OS Container Extensions:

➢ enable application developers to develop and data centers to operate popular open source

packages, Linux applications, IBM software, and third-party software together with z/OS

applications and data-leveraging industry standard skills.

➢ Enables the capability to integrate z/OS more easily into private and multicloud environments

➢ with improvements to deliver a more robust and highly available IBM Cloud™ Provisioning and

Management for z/OS and cloud storage access for z/OS data

New

https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?subtype=ca&infotype=an&supplier=897&letternum=ENUS219-344

z/OS Container Extensions– A turn-key Virtual Docker Server

Pre-packaged Docker Environment provided by IBM

• Includes Linux and Docker Engine components

• Supported directly by IBM

• Can include clustering and registry capabilities

• Initial focus is on base Docker capabilities

• Competitive price/performance (Exploits zIIPs)

Application developers can deploy software using
Docker interface

• Any software available as a Docker image (s390x) -
growing ecosystem available on Docker Hub

• Any home-grown Linux on Z container images

• Using standard Docker interfaces

Limited visibility into Linux environment

• No root access

• Access as defined by Docker interfaces

• Limited Linux administrative overhead

• Secure virtual network - SAMEHOST

Also provides IBM and ISVs a means of delivering
solutions into this environment

• Requires packaging of software as Docker images

zCX Virtual Docker Address Space

…..

z/OS

Linux
Container

Linux
Container

Linux
Container

Docker CLI

TCP/IP

Regular z/OS Address Spaces

Linux Docker Engine

Linux Kernel

Standard
Docker

APIs

z/OS
software

Linux
software

New

z/OS CX Virtual Docker Server Address

Space

…..

z/OS

Docker

Container
Docker

Container

Docker

Container

Linux Docker Engine

Linux Kernel

Standard

Docker

APIs

Virtual CPU

(MVS TCBs)

Memory

(Virtual Private memory

above the bar)

MVS Dispatcher VSM/RSM

z/OS Linux Virtualization Layer

▪ Memory Management
– Provisioned per zCX Docker Server address

space
– Private, above the 2GB bar Fixed Memory
– Managed by VSM, RSM

▪ CPU Management
– Virtual CPUs provisioned to each zCX Docker

Server address space
• Each virtual CPU is a dispatchable

thread (i.e. MVS TCB) within the address
space

• zIIP CPU access via MVS dispatcher
– A zCX instance can host multiple Docker

Container instances

▪ Normal WLM policy and resource controls
extend to zCX Docker Server address spaces

– Service Class association, goals and
Importance levels

– Tenant Resource Group association
• Optional caps for CPU and real memory

▪ Normal SMF data available
– SMF type 30, 72, etc.
– Enables z/OS performance management and

capacity planning

zIIP processors Virtual and Real Memory

z/OS Workload Manager

WLM policy controls
Service Class: LINUXHI

Classified as STC

Importance Level: 2

Execution Velocity: 60

I/O Priority Queueing enabled

Tenant Resource Group:

ZCXDEV

CPU cap: 2 CPUs

SMF

Data

SMF

19

IBM zCX - CPU, Memory and Workload Management

zCX Address Spacesz/OS

VirtIO

Storage

VirtIO

Network

DFSMS

VSAM

TCP/IP

zCX Linux Virtualization Layer

Linux Docker Engine

Container

A1

Container

A2

VirtIO

Storage

VirtIO

Network

DFSMS

VSAM

TCP/IP

zCX Linux Virtualization Layer

Linux Docker Engine

Linux Kernel

Container

B1

Container

B2

Regular z/OS

Address Spaces

GP CPU pool

Dispatcher

zIIP CPU pool

WLM VSM/RSM/ASM

Real Memory Docker

Server B
Docker

Server A

VSAM

Datasets

(Linux Disks)

Server A

Linux Kernel

VSAM

Datasets

(Linux Disks)

Server B

DVIPA1 DVIPA2

20

Deploying Multiple zCX Address Spaces

Multiple zCX instances can be deployed

within a z/OS system for:

• Isolation of applications (containers)

• Different business/performance

priorities (i.e. unique WLM service

classes)

• Capping of resources allocated for

related workload (CPU, memory, disk,

etc.)

Each zCX address space:

• Has specific assigned storage, network

and memory resources

• Shares CPU resources with other

address spaces

• WLM policy controls can influence

resource access

The z/OS Dispatcher, WLM and VSM/RSM

components manage access to CPU and

memory

IBM zCX - Goals & Qualities of Service

z/OS Workload
Management, Capacity
Planning & Chargeback

WLM: Service Class goals,
Business Importance levels,
ability to cap resource
consumption (CPU and
memory)

Capacity Provisioning
Manager (CPM) support

SMF support for accounting
and chargeback

Using z/OS DR/GDPS to
cover storage used by
Linux automatically,
integrated restart
capabilities for site failures,
etc.

Integrated Planned Outage
Coordination

No need to coordinate with
non-z/OS administrators
when planning a
maintenance window,
moving workloads to
alternate CECs, sites, etc.

Integrated Disaster
Recovery & Planned
Outage Coordination

Eliminate single points of
failure

Exploit z/OS VSAM which
offers transparent
encryption, and failure
detection with
HyperSwap

Configuration validation,
I/O health checks,

Automatic exploitation
zHyperLink and future
z/OS Storage
enhancements

z/OS Storage
Resilience

Support for VIPAs,
Dynamic VIPAs allowing
for non-disruptive
changes, failover, and
dynamic movement of the
workload.

High speed and secure
communications with
Cross-Memory Virtual
Network Interface
(SAMEHOST)

z/OS Networking
Virtualization, Security &

Availability

21

22© Copyright IBM Corporation 2017. Technical University/Symposia materials may not be reproduced in whole or in

part without the prior written permission of IBM.

Why consider containers on IBM Z ?

▪ Highest scalability on one footprint on IBM Z

▪ Most securable platform and containers profit from the capabilities
▪ Encryption performance with the Crypto accelerators and CPACF on each core
▪ New Linux software components and solutions in z/OS
▪ No software-level dependencies between containers or to the host
▪ Re-use of same components in different Ops scenarios (test, QA, Prod)
▪ Micro-services implementation flexibility

▪ Portability and Multi-platform deployment through generic build description

▪ High Density through lightweight container implementations in Linux kernel

▪ Bridges Dev to Ops with consistent tooling and environment

22

Scale-out with
Container under z/VM
on LinuxONE III

DISCLAIMER: Performance result is extrapolated from IBM internal tests running in a
LinuxONE III LPAR with 1 dedicated core and 16 GB memory 980 NGINX Docker
containers. Results may vary. Operating system was SLES12 SP4 (SMT mode). Docker
18.09.6 and NGINX 1.15.9 was used.

Container Scale-out Performance

Scale-out to 2.4 million Docker
containers in a single LinuxONE
III system

LinuxONE III

zHypervisor

LPAR 1 (9 cores, 2 TB memory)

z/VM 7.1

980 NGINX

web server

z/VM guest

1

(2 vCPU,

16GB memory)

. . .

980 NGINX

web server

z/VM guest

126

(2 vCPU,

16GB memory)

LPAR 20 (9 cores, 2 TB memory)

z/VM 7.1

980 NGINX

web server

z/VM guest

2395

(2 vCPU,

16GB memory)

. . .

980 NGINX

web server

z/VM guest

2520

(2 vCPU,

16GB memory)

. . .

Scale-out under KVM on
LinuxONE III versus x86
Skylake

DISCLAIMER: Performance result is extrapolated from IBM internal tests running 980
NGINX Docker containers in a LinuxONE III LPAR and bare-metal on a x86 server. LinuxONE
III measurement configuration: LPAR with 1 dedicated core, 16 GB memory, running SLES
12 SP4 (SMT mode), Docker 18.09.6, NGINX 1.15.9. x86 measurement configuration: 1
Intel® Xeon® Gold 6126 CPU @ 2.60 GHz with Hyperthreading turned on, 16 GB memory,
running SLES 12 SP4, Docker 18.09.6, NGINX 1.15.9. Based on the measurement results it is
extrapolated that a LinuxONE III server with 190 cores and 40 TB memory can run 2.469
million NGINX Docker containers if configured with 20 LPARs, each having 9 cores, 2 TB
memory, and running a KVM 2.11.2 instance with 126 KVM guests, each configured with 2
vCPUs, 16 GB memory, and running 980 dockerized NGINX web server. Based on the
measurement results it is extrapolated that a x86 server with 8 Intel® Xeon® Platinum 8156
processors (32 cores in total) and 6 TB memory can run 376 thousand NGINX Docker
containers if configured with KVM 2.11.2 with 384 KVM guests, each configured with 2
vCPUs, 16 GB memory, and running 980 dockerized NGINX web server. Results may vary.

Container Scale-out Performance

Run up to 6.6x more Docker containers
under KVM on a LinuxONE III system
versus a compared x86 platform

LinuxONE III (190 cores, 40 TB memory)

zHypervisor

LPAR 1 (9 cores, 2 TB memory)

KVM

980 NGINX

web server

KVM guest

1
(2 vCPU,

16GB memory)

. . .

980 NGINX

web server

KVM guest

126
(2 vCPU,

16GB memory)

LPAR 20 (9 cores, 2 TB memory)

KVM

980 NGINX

web server

KVM guest

2395
(2 vCPU,

16GB memory)

. . .

980 NGINX

web server

KVM guest

2520
(2 vCPU,

16GB memory)

. . .

Compared x86 platform (32 cores, 6 TB memory)

KVM

980 NGINX

web server

KVM guest 1
(2 vCPU,

16GB memory)

. . .

980 NGINX

web server

KVM guest 384
(2 vCPU,

16GB memory)

2.4 million Docker container on LinuxONE III w/ 40 TB memory
versus

376 thousand Docker container on a x86 server w/ 6 TB memory

25© Copyright IBM Corporation 2017. Technical University/Symposia materials may not be reproduced in whole or in

part without the prior written permission of IBM.

Portability of Container & Multi Architecture support

⚫ Container user experience (CLI, REST API) is identical across platforms

⚫ Container images are not portable, the source code or a s390x binary must be build and available

⚫ Micro-service architectures often have clean structure and simple individual components

⚫ Containers are often created with Dockerfiles (build descriptions) containing:

− Specification of the base image

⚫ If the same distribution is available on s390x, usually simple

⚫ If the base image is not available, some creativity is required

− Additional steps to modify the image are often platform independent

⚫ Add packages (needs to match the base image)

⚫ Download files, Perform build

⚫ Same Dockerfile can be used for multi-platform builds

⚫ Multi-arch Registry support available using external tools (i.e. manifest tool)

− http://containerz.blogspot.com.br/2016/07/multi-arch-registry.html

http://containerz.blogspot.com.br/2016/07/multi-arch-registry.html

26© Copyright IBM Corporation 2017. Technical University/Symposia materials may not be reproduced in whole or in

part without the prior written permission of IBM.

Manifest tool - creates Multi – Architecture Container Images

Container images on Docker Hub are multi-arch
• lots of images as s390x versions available

docker build

docker push

docker build

docker push

common

Dockerfile
image: webapp:latest

manifests:

-

image: webapp-s390x

platform:

architecture: s390x

os: linux

-

image: webapp-amd64

platform:

architecture: amd64

Z
x86

manifest

contains multi-arch images

27© Copyright IBM Corporation 2017. Technical University/Symposia materials may not be reproduced in whole or in

part without the prior written permission of IBM.

Container Ecosystem evolved for IBM Z

Container image Container runtimes & orchestration Container tools

Multi-arch support

runC runQ

OCI-based

Container engine

Kubernetes

runtime runtime

28© Copyright IBM Corporation 2017. Technical University/Symposia materials may not be reproduced in whole or in

part without the prior written permission of IBM.

The OCI Initiative
https://www.opencontainers.org/

The Open Container Initiative (OCI) is a lightweight, open governance structure (project), formed under the

auspices of the Linux Foundation, for the express purpose of creating open industry standards around

container formats and runtime.

The OCI was launched on June 22nd 2015 by Docker, CoreOS and other leaders in the container industry

Two specifications:

Image Specification : define an OCI Image then it will be unpacked into an OCI Runtime filesystem bundle

Runtime Specification: how to run a “filesystem bundle” that is unpacked on disk.

‘runc’ implements the runtime specification

https://www.opencontainers.org/

29© Copyright IBM Corporation 2017. Technical University/Symposia materials may not be reproduced in whole or in

part without the prior written permission of IBM.

NamespaceNamespace

container runtime

containercontainer container

Host kernel

Container components

Containers are processes that run isolated
from the other processes on the host:

➢ The isolation is achieved by
namespaces and cgroups

➢ The host kernel is shared between the
host and all containers

Container Runtimes:

➢ A container runtime is a lower level component,
typically used in a Container Engine but can also
be used by hand for testing.

runc is one of the most used container runtimes

Other runtimes beside ‘runc’, e.g. ‘runq’ and ‘Kata’

(1) - runtimes

30© Copyright IBM Corporation 2017. Technical University/Symposia materials may not be reproduced in whole or in

part without the prior written permission of IBM.

NamespaceNamespace

container engine

container runtime (OCI runtime)

containercontainer container

Host kernel

A Container engine manages the
container lifecycle

• Pull the image

• Create the container filesystem from
image with Copy-on-write strategy

• Run the container

• Logging

• Debugging

Different container engines exist,
e.g. Docker, CRI-O, containerd, podman...

Container components

(2) Container engines

31© Copyright IBM Corporation 2017. Technical University/Symposia materials may not be reproduced in whole or in

part without the prior written permission of IBM.

Container engines diversity

• A stable, core, performant core container runtime for the cloud

• Has a CRI implementation, and is a CNCF graduated project

• “all the runtime Kubernetes needs and nothing more”; RH created

CRI implementation over runc and 2 open libraries; K8s incubator

• Intel Clear Containers + Hyper.sh combined project

• Lightweight virtualization (KVM/qemu) under cri-o and containerd

• Amazon open source project announced Nov 2018; lightweight virt.

• Uses Rust-based VMM instead of qemu; plugs into containerd

• CRI implementation over Sylabs Singularity runtime project

• Userbase traditionally from academia/HPC use cases

Container in Red Hat & OpenShift

Red Hat headed towards a world without any Docker

- Cri-o is only one component (the Kubernetes CRI runtime) of OpenShift

- RHEL will not deliver a modern Docker engine; Red Hat will replace it with:

- podman (docker client clone); skopeo (registry); buildah (docker build..)

Red Hat dedicated customers will not have Docker

- Standalone dependencies on modern Docker engines will not be allowed

- This means Container images built/packaged and tested with Docker can be

reused and eventually be adjusted; but runtime dependencies will most likely be

rejected.

34

38© Copyright IBM Corporation 2017. Technical University/Symposia materials may not be reproduced in whole or in

part without the prior written permission of IBM.

Alternative container engine

Red Hat provides an alternative container ecosystem tooling

Available from RHEL 8 and Fedora 29:

➢ Container deployment: podman

➢ Container building: buildah

➢ Container Registry: Quay

➢ Manage container images and registry: skopeo

➢ Cri-o: container engine used in Red Hat Openshift V4

40© Copyright IBM Corporation 2017. Technical University/Symposia materials may not be reproduced in whole or in

part without the prior written permission of IBM.

Container build: Docker vs Podman

> docker build –f Dockerfile .

Daemon: all operations manages by a single

deamon. Single point of failure.

Root privileges: all Docker operations have to be

conducted by a user (or users) with the same full

root authority

Networking: CNR and CNI plugins support

User friendly: straightforward to use and a lot of

examples, documentation and tooling available

> podman build –f Dockerfile .

Daemon less: a podman instance pro container

Run container rootless: user without root privileges

can start containers

Networking: only CNI plugin support

User friendly: goal to offer the same user experience as

docker. Less documentation and not all the flags

available for docker are available in podman

These tools are all building OCI compliant container imagers and

can be used with different container runtimes.

41© Copyright IBM Corporation 2017. Technical University/Symposia materials may not be reproduced in whole or in

part without the prior written permission of IBM.

Deployment: Podman vs. Docker

The claim is made:

• if you have existing scripts that run Docker you

can create a docker alias for podman and all your

scripts should work

(alias docker=podman)

When you first type

‘podman images’ - you might be surprised that you

don’t see any of the Docker images you’ve already

pulled down – running it as user vs as root.

Podman’s local repository is in /var/lib/containers

instead of /var/lib/docker

This isn’t an arbitrary change; this new storage structure is

based on the Open Containers Initiative (OCI)

standards.

Setup Podman / Buildah:

There are a few things to unpack here and we’ll get into each one
separately:

• You install Podman instead of Docker. You do not need to start
or manage a daemon process like the Docker daemon.

• The commands you are familiar with in Docker work the same
for Podman.

• Podman stores its containers and images in a different place
than Docker.

• Podman and Docker images are compatible.

• Podman does more than Docker for Kubernetes environments.

What is buildah and why might I need it?

• Buildah can be described as a superset of podman commands
related to creating and managing container images and it has
much finer-grained control over images.

• Dynamic mounts i.e. secrets, volumes, can only be made with
buildah

You may wish to keep Docker around while you try out Podman.

There are some useful tutorials and an awesome demonstration available.

https://developers.redhat.com/blog/2019/02/21/podman-and-buildah-for-docker-users/

https://github.com/containers/buildah/tree/master/docs/tutorialshttps://github.com/containers/libpod/blob/master/docs/tutorials/podman_tutorial.md

https://developers.redhat.com/topics/kubernetes/
https://github.com/containers/libpod/blob/master/docs/tutorials/podman_tutorial.md
https://github.com/containers/Demos/tree/master/building/buildah_intro
https://developers.redhat.com/blog/2019/02/21/podman-and-buildah-for-docker-users/
https://github.com/containers/buildah/tree/master/docs/tutorials
https://github.com/containers/libpod/blob/master/docs/tutorials/podman_tutorial.md

44

Availability of Container Tools on IBM Z

44

▪Docker is available and supported in

−Ubuntu 16.04 and later

−RHEL 7.5 - 7.7 via extras repository

−SLES 15 – SLES 15 SP1

▪Podman is available and supported in

−RHEL 7.5 and later

−SLES15 SP1

▪Docker as community edition:

−Ubuntu 16.04 and later

−Fedora 28 and later

Red Hat

SUSE

Ubuntu

docker podman

SLES15 17.09 -

SLES15 SP1 18.09.1 1.0.1

docker podman

RHEL 7.5 1.13 0.9.2

RHEL 7.6 1.13 1.4.4

RHEL 7.7 1.13 1.4.4

RHEL 8 - 1.0.0.2

RHEL 8.1 - 1.4.2

docker podman

16.04 LTS 18.09.7 -

18.04 LTS 18.09.7 -

52© Copyright IBM Corporation 2017. Technical University/Symposia materials may not be reproduced in whole or in

part without the prior written permission of IBM.

Agenda

➢ Container technologies and Ecosystem

➢ Container Orchestration

52

53© Copyright IBM Corporation 2017. Technical University/Symposia materials may not be reproduced in whole or in

part without the prior written permission of IBM.

Container Orchestration

⚫ Kubernetes and Docker Swarm build the base ecosystem

⚫ Based on identical source code

⚫ IBM Z binaries are built as part of the release process

⚫ Kubernetes and Docker Swarm mixed architecture

development and deployment

⚫ Docker Hub Content (images) valid for both orchestrators

⚫ Both products run on Linux on Z

53

54© Copyright IBM Corporation 2017. Technical University/Symposia materials may not be reproduced in whole or in

part without the prior written permission of IBM.

K8S Worker Node1 K8S Worker Node2

pod2pod1pod2pod1

K8S Worker Node3

pod3pod1

cluster

Kubernetes (K8S) – defines itself in a cluster format

Kubernetes Master Nodes
Kubernetes Master Nodes

Kubernetes is not running container – it orchestrates them

55© Copyright IBM Corporation 2017. Technical University/Symposia materials may not be reproduced in whole or in

part without the prior written permission of IBM.

NamespaceNamespace

container engine

container runtime

containercontainer container

Host kernel

➢ Kubernetes is a container orchestration
tool for automation, application
deployment, scalability and container
management

➢ It groups containers in a unit called Pod

➢ It deploys container using a container
engine

➢ The kubelet is the primary “node agent”
that runs on each node

➢ Easy to extend through its API

➢ Huge ecosystem around Kubernetes API

kubernetes

POD

Kubernetes (k8s) - worker node architecture

POD

Worker

57© Copyright IBM Corporation 2017. Technical University/Symposia materials may not be reproduced in whole or in

part without the prior written permission of IBM.

kubelet

dockershim

dockerd

kubelet

cri-containerd

containerd

kubelet

cri-o

runc

kubelet

containerd

Kata Firecracker

kubelet --container-runtime {string}

--container-runtime-endpoint {string}

Diversity of CRI Runtimes to Kubernetes today

kubelet

singularity-cri

singularity

58© Copyright IBM Corporation 2017. Technical University/Symposia materials may not be reproduced in whole or in

part without the prior written permission of IBM.

Kubernetes

Docker engine

containerd
cri-o

runc / Kata

[1] https://www.docker.com/why-docker
[2] https://www.projectatomic.io/

Container images from Docker Hub, Red Hat, private registries...

Container orchestration ecosystem with K8S

podman

notary, buildkit,
docker-compose

Docker
ecosystem Skopeo, buildah

Kompose

Project Atomic

https://www.docker.com/why-docker
https://www.projectatomic.io/

59© Copyright IBM Corporation 2017. Technical University/Symposia materials may not be reproduced in whole or in

part without the prior written permission of IBM.

Infrastructure
Support

Application
Catalog

Development
support

Image and
Registry

Management

Kubernetes Core Functions

Container Differentiator: Toolset and components

Kubernetes APIs are used in all Orchestration products

(i.e. OpenShift, Cloud Foundry, IBM Cloud Private)

NamespaceNamespace

container engine

container runtime

containercontainer container

Host kernel

POD POD

…

60© Copyright IBM Corporation 2017. Technical University/Symposia materials may not be reproduced in whole or in part without the prior written permission of

IBM.

Red Hat OpenShift Container Platform available for

Linux on Z & LinuxONE

• OpenShift brings together the core open source technologies of Linux,

containers and Kubernetes.

https://developer.ibm.com/blogs/willie-tejada-redhat-openshift-ibmz/

Available:

Red Hat OpenShift V4.2

for IBM Z and LinuxONE

Announced by Ross Mauri

Feb 13, 2020

Red Hat OpenShift V4.3

available since April 30.

New

http://www.ibm.com/blogs/systems/red-hat-openshift-now-available-ibm-z-linuxone

https://developer.ibm.com/blogs/willie-tejada-redhat-openshift-ibmz/
https://www.ibm.com/blogs/systems/author/rossmauri/
http://www.ibm.com/blogs/systems/red-hat-openshift-now-available-ibm-z-linuxone

62© Copyright IBM Corporation 2017. Technical University/Symposia materials may not be reproduced in whole or in part without the prior written permission of

IBM.

Red Hat OpenShift - Immutable Infrastructure

https://blog.openshift.com/wp-content/uploads/Red-Hat-OpenShift-4.0-Roadmap-Public-Feb-2019-Ali.pdf

Immutability = repeatability

Immutability = auditability

https://blog.openshift.com/wp-content/uploads/Red-Hat-OpenShift-4.0-Roadmap-Public-Feb-2019-Ali.pdf

63© Copyright IBM Corporation 2017. Technical University/Symposia materials may not be reproduced in whole or in part without the prior written permission of

IBM.

https://www.redhat.com/cms/managed-files/cl-openshift-4-datasheet-f16726wg-201905-en.pdf

Red Hat OpenShift V4

https://www.redhat.com/cms/managed-files/cl-openshift-4-datasheet-f16726wg-201905-en.pdf

https://docs.openshift.com/container-platform/4.1/architecture/architecture.html

Red Hat OpenShift V4

OpenShift is a layered system designed to expose Container images and Kubernetes

concepts, with a focus on easy composition of applications by a developer.

What Are the Layers?

• The Container service provides the abstraction for creating container images.

• Kubernetes provides the cluster management and orchestrates containers

• Container Runtime Interface (CRI) - how K8S talks with a container engine

• Container engines - implement the CRI interface (OCI compliant)

OpenShift Container Platform adds:

• Source code management, builds, and deployments for developers

• Managing and promoting images at scale as they flow through your system

• Application management at scale

• Team and user tracking for organizing a large developer organization

• Networking infrastructure that supports the cluster

https://docs.openshift.com/container-platform/4.1/architecture/architecture.html
https://docs.openshift.com/container-platform/3.5/architecture/core_concepts/containers_and_images.html#containers
https://docs.openshift.com/container-platform/3.5/architecture/infrastructure_components/kubernetes_infrastructure.html#architecture-infrastructure-components-kubernetes-infrastructure
https://docs.openshift.com/container-platform/3.5/architecture/core_concepts/builds_and_image_streams.html#builds
https://docs.openshift.com/container-platform/3.5/architecture/core_concepts/deployments.html#architecture-core-concepts-deployments
https://docs.openshift.com/container-platform/3.5/architecture/core_concepts/containers_and_images.html#docker-images

68© Copyright IBM Corporation 2017. Technical University/Symposia materials may not be reproduced in whole or in part without the prior written permission of

IBM.

Red Hat OpenShift Deployment options

Red Hat OpenShift 4 (OCP) aims to deliver the automation experience of a native public

cloud container platform while retaining the flexibility of a multi-cloud, enterprise-class

solution.

• Installer Provisioned Infrastructure (IPI)

On supported platforms, the installer is capable to provision the underlying infrastructure

for the cluster.

Via the installer create all components, networking, machines, and operating systems for

the cluster.

• User Provisioned Infrastructure (UPI)

For platforms or in scenarios where installer provisioned infrastructure would be

incompatible, the platform administrator has to provision the infrastructure using the cluster

assets generated by the install tool.

Once the infrastructure has been created, OpenShift 4 is installed, maintaining its ability to

support automated operations and over-the-air platform updates.

Minimum operational OCP 4.2
cluster on z/VM Layout

69

Characteristics:
• UPI deployment with z/VM

• Based on CoreOS only

• Automatic through
deployment server for
installation
(temporary, i.e. z/VM guest)

External network

Load Balancer

DHCP NFSDNS

https://docs.openshift.com/container-platform/4.2/installing/installing_ibm_z/installing-ibm-z.html

IBM Z / LinuxONE

z/VM LPAR

OCP
Master
Node

RHEL
CoreOS

OCP
Master
Node

RHEL
CoreOS

OCP
Master
Node

RHEL
CoreOS

OCP
Worker
Node

RHEL
CoreOS

OCP
Worker
Node

RHEL
CoreOS

VSwitch

OSA / RoCE

MinidiskDASD / FCP Disk

https://docs.openshift.com/container-platform/4.2/installing/installing_ibm_z/installing-ibm-z.html

70

IBM Certified Containers
Containerized, security-compliant IBM middleware

and Open Source components

Common operational services
Logging, monitoring, metering, persistent storage, security,

identity access management, Docker registry/Helm

Container platform
Kubernetes-based and portable

IBM Cloud Paks – IBM Software in Container

IBM Cloud PaksPre-integrated for cloud use cases

Enterprise-grade, modular middleware solutions giving clients
an open, faster, more reliable way to move, build, and manage on the cloud

https://www.ibm.com/cloud/paks/

https://www.ibm.com/cloud/paks/

72© Copyright IBM Corporation 2017. Technical University/Symposia materials may not be reproduced in whole or in

part without the prior written permission of IBM.
72

Cloud Paks – Pre-integrated for cloud use cases

Today, IBM offers clients the first six Cloud Paks…

© 2020 IBM Corporation

Cloud Pak for
Security

Connect
security data,
tools, and teams

Cloud Pak for
Applications

Developer &
DevOps Tools

Modernization
Toolkit

Frameworks and Runtimes

Build,
deploy,
and run applications

Cloud Pak for
Data

Collect,
organize,
and analyze data

Organize Analyze

Collect

Cloud Pak for
Integration

Integrate
applications,
data, cloud services,
and APIs

API
Lifecycle

Messaging
and Events

App and Data Integration

Cloud Pak for
Automation

Transform
business

processes, decisions,
and content

Workflow and Decisions

Operational
Intelligence

Content

Cloud Pak for
Multicloud

Management

Multicloud
visibility,
governance,
and automation

App and
Infrastructure

Multicluster

Security and Compliance
Management

Incident
Response

Federated
Search and

Investigation

Security Orchestration
and Automation

Infrastructure
IBM Z®

IBM LinuxONE™

IBM Power

Systems™
IBM cloud™

AWS™

Azure™

Google Cloud™

75© Copyright IBM Corporation 2017. Technical University/Symposia materials may not be reproduced in whole or in

part without the prior written permission of IBM.

• Connects z/OS services running on an IBM Z

backend to a frontend private cloud platform

providing self-service access and consumption

of these services to developers

IBM z/OS Cloud Broker

z/OS subsystems

(CICS/IMS/Db2 etc.)

z/OS

IBM z/OS

Cloud Broker

Consumers

Provides self-service access to managed IBM Z resources to all flavors

of application developers

Centralization and automation of IBM Z operations to provide Z

resources to agencies or clients in their hybrid cloud

Improve time to value through efficiencies in development and

deployment

Support for OpenShift

Platform GA: 4Q 2019
https://www.ibm.com/support/z-content-solutions/cloud-broker/

https://www.ibm.com/support/z-content-solutions/cloud-broker/

77© Copyright IBM Corporation 2017. Technical University/Symposia materials may not be reproduced in whole or in

part without the prior written permission of IBM.

Summary: Why Containers work -- Separation of Concerns

Dan the Developer

• Worries about what’s “inside” the

container

• His code

• His Libraries

• His Package Manager

• His Apps

• His Data

• All Linux servers look the same

Oscar the Ops Guy

• Worries about what’s “outside” the
container

• Logging

• Remote access

• Monitoring

• Network config

• All containers start, stop, copy,
attach, migrate, etc. the same way

Build once…(finally) run anywhere*

• A clean, safe, hygienic and portable runtime

environment for your app.

• No worries about missing dependencies, packages

and other pain points during subsequent

deployments.

• Run each app in its own isolated container, so you

can run various versions of libraries and other

dependencies for each app without worrying

• Automate testing, integration, packaging…anything

you can script

• Reduce/eliminate concerns about compatibility on

different platforms, either your own or your customers.

• Cheap, zero-penalty containers to deploy services? A

VM without the overhead of a VM? Instant replay and

reset of image snapshots? That’s the power of Docker

Configure once…run anything

• Make the entire lifecycle more efficient,

consistent, and repeatable

• Increase the quality of code produced by

developers.

• Eliminate inconsistencies between development,

test, production, and customer environments

• Support segregation of duties

• Significantly improves the speed and reliability of

continuous deployment and continuous

integration systems

• Because the containers are so lightweight,

address significant performance, costs,

deployment, and portability issues normally

associated with VMs

80© Copyright IBM Corporation 2017. Technical University/Symposia materials may not be reproduced in whole or in part without the prior written permission of

IBM.

Open-source containerized Software for Linux on IBM Z & IBM LinuxONE

80

https://www.ibm.com/developerworks/community/forums/html/topic?id=5dee144a-7c64-4bfe-884f-751d6308dbdf

The table provides up-to-date information on open source packages that have been ported and/or validated on corresponding distro

versions by IBM.

https://www.ibm.com/developerworks/community/forums/html/topic?id=5dee144a-7c64-4bfe-884f-751d6308dbdf

81© Copyright IBM Corporation 2017. Technical University/Symposia materials may not be reproduced in whole or in part without the prior written permission of

IBM.

Docker-Hub containerized software for Linux on IBM Z & IBM LinuxONE

81

https://hub.docker.com/search?q=HTTPd&type=image&architecture=s390x

The search provides public container images that have been built for Linux with version of Linux on Z and LinuxONE

https://hub.docker.com/search?q=HTTPd&type=image&architecture=s390x

Where can I download OCP V4 for IBM Z ?

try.openshift.com
cloud.redhat.com

www.share.org/sanan

tonio-eval
http://creativecommons.org/licenses/by-nc-nd/3.0/

Questions?

IBM Deutschland Research

& Development GmbH

Schönaicher Strasse 220

71032 Böblingen, Germany

Office: +49 (0)7031-16-3796

wilhelm.mild@de.ibm.com

Wilhelm Mild

IBM Executive IT Architect

83

http://www.share.org/evaluation
http://creativecommons.org/licenses/by-nc-nd/3.0/

2019 IBM Systems Technical University

Notices and disclaimers

— © 2019 International Business Machines Corporation. No part of
this document may be reproduced or transmitted in any form
without written permission from IBM.

— U.S. Government Users Restricted Rights — use, duplication
or disclosure restricted by GSA ADP Schedule Contract with
IBM.

— Information in these presentations (including information
relating to products that have not yet been announced by IBM)
has been reviewed for accuracy as of the date of
initial publication and could include unintentional technical or
typographical errors. IBM shall have no responsibility to update
this information. This document is distributed “as is” without
any warranty, either express or implied. In no event, shall
IBM be liable for any damage arising from the use of this
information, including but not limited to, loss of data,
business interruption, loss of profit or loss of opportunity.
IBM products and services are warranted per the terms and
conditions of the agreements under which they are provided.

— IBM products are manufactured from new parts or new and used
parts.
In some cases, a product may not be new and may have been
previously installed. Regardless, our warranty terms apply.”

— Any statements regarding IBM's future direction, intent or
product plans are subject to change or withdrawal without
notice.

— Performance data contained herein was generally obtained in a
controlled, isolated environments. Customer examples are
presented as illustrations of how those

— customers have used IBM products and the results they may have
achieved. Actual performance, cost, savings or other results in
other operating environments may vary.

— References in this document to IBM products, programs, or
services does not imply that IBM intends to make such products,
programs or services available in all countries in which
IBM operates or does business.

— Workshops, sessions and associated materials may have been
prepared by independent session speakers, and do not necessarily
reflect the views of IBM. All materials and discussions
are provided for informational purposes only, and are neither
intended to, nor shall constitute legal or other guidance or advice
to any individual participant or their specific situation.

— It is the customer’s responsibility to insure its own compliance
with legal requirements and to obtain advice of competent legal
counsel as to the identification and interpretation of any
relevant laws and regulatory requirements that may affect the
customer’s business and any actions the customer may need to
take to comply with such laws. IBM does not provide legal advice
or represent or warrant that its services or products will ensure
that the customer follows any law.

© Copyright IBM Corporation 201984

2019 IBM Systems Technical University

Notices and disclaimers continued

— Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly
available sources. IBM has not tested those products about this publication
and cannot confirm the accuracy of performance, compatibility or any other
claims related to non-IBM products. Questions on the capabilities of non-
IBM products should be addressed to the suppliers of those products.
IBM does not warrant the quality of any third-party products, or the ability
of any such third-party products to interoperate with IBM’s products. IBM
expressly disclaims all warranties, expressed or implied, including but
not limited to, the implied warranties of merchantability and fitness for
a purpose.

— The provision of the information contained herein is not intended to, and
does not, grant any right or license under any IBM patents, copyrights,
trademarks or other intellectual property right.

— IBM, the IBM logo, ibm.com and [names of other referenced
IBM products and services used in the presentation] are
trademarks of International Business Machines Corporation,
registered in many jurisdictions worldwide. Other product
and service names might be trademarks of IBM or other
companies. A current list of IBM trademarks is available on
the Web at "Copyright and trademark information" at:
www.ibm.com/legal/copytrade.shtml

© Copyright IBM Corporation 201985

http://www.ibm.com/legal/copytrade.shtml

