
REXX/Sockets
Update
ARTHUR ECOCK

ARTY.ECOCK@GMAIL.COM

1

Prelude

u Why do this?

u Request from Tim Kessler for 5 TLS IOCTLs – 2018

u Perry and Dave gave TLS presentation at 2019 VM Workshop

u “Heads up” from Tim for new IOCTL – 2020

u So, a little recent interest

u Really no room in code to do anything significant

u IPv6 gaining my interest for past several years

u More involvement with TLS

2

Agenda

u Base code changes

u TLS changes

u IPv6 changes

3

u REXX/Sockets is a REXX function package that allows client/server
communication using BSD-style “sockets”

u Much like the low-level communication protocols that power the
Internet

u REXX/Sockets “exposes” an Assembler-based IUCV API to the REXX
language

u Focus on keeping function syntax “native” to REXX

u C: connect(s, *name, namelen);

u REXX: Socket(‘Connect’, s, ‘AF_INET 443 www.site.info')

u Many Socket(‘…’) functions

Brief History 4

http://www.site.info

Base code changes (the past)

u Original code used 3 (4) base registers

u Re-shuffled subroutines and data areas for additional addressability

u Re-coded to use address constants (yuch)

u Added external code (PL/X, yuch)

u Not much addressability left

u Difficult to add new function (SIOCGCERTDATA)

5

Base code changes (the present)

u Perry Ruiter to the rescue
u XEDIT magic to change all Branch instructions to Branch Relative instructions

u Found a paper by Sharuff Morsa (IBM UK)
u “Relative Addressing (what to do when you run out of base registers)”

u Replace L rx,=A(label) with LARL rx,label

u With these resources, initial goal was to:
u Replace short labels with more readable (longer) labels (maintainability)

u Use 1 base register, not 4

u Refactor a few routines to reduce code redundancy

u Use “immediate” and “relative” instructions where appropriate

u Fix a few bugs

u Clean up “existing” TLS code

6

Base code changes

u No further addressability issues!

u Room for more code

u Lots of new code:

u TLS IOCTLs

u IPv6

u Much better DNS support

u Enhanced diagnostics

7

Base code changes

u Socket(‘Version’)

 0 REXX/SOCKETS 3.05 12 April 1996

u Version moved from 3.04 to 3.05 (incremental change)

8

TLS changes

u SIOCTLSQUERY

u SIOCSECCLIENT

u SIOCSECSERVER

u SIOCSECSTATUS

u SIOCSECCLOSE

u SIOCGCERTDATA

9

TLS changes

u SIOCTLSQUERY

u Socket(‘IOCTL’, socket, ‘SIOCTLSQUERY’, label)

u rc = 0 indicates the TLS “label” is present in the gskkyman database, and
an SSL server Is available

u If “label” was blank, rc = 0 indicates an available SSL server

10

TLS changes

u SIOCSECCLIENT

u Socket(‘IOCTL’, socket, ‘SIOCSECCLIENT’, label, <options>, <msg>)

u Socket(‘IOCTL’, socket, ‘SIOCSECCLIENT’, label,

 ‘NoSSLv2 fqdn=server.com hostname=server Alert’)

Options:

u NoSSLv2: “Don’t use SSLv2 ciphers”

u fqdn, hostname: “Check server certificate fields for matching data”

u ipv4 and ipv6 keywords also supported

u These options imply “Host Validation is Required”

u Alert: “Don’t fail the SSL Handshake if fields don’t match, just inform me”

11

TLS changes

u SIOCSECSERVER

u Socket(‘IOCTL’, socket, ‘SIOCSECSERVER’, label, <options>, <msg>)

u Socket(‘IOCTL’, socket, ‘SIOCSECSERVER’, label,

 ‘NoSSLv2 ClientCertCheck=Required’)

Options:

u NoSSLv2: “Don’t use SSLv2 ciphers”

u ClientCertCheck: “Request client certificate and validate”

u ClientCertCheck=None (default) and ClientCertCheck=Preferred also supported

u Other options supported: NoCheck (default), FullCheck, ValidatePeerCert,
RequestClientCert, SSLv2 (however, NoCheck, FullCheck, and
RequestClientCert must be used in specific combinations to achieve Client
Certificate Checking: Use ClientCertCheck option instead)

12

TLS changes

u SIOCSECSTATUS
u Socket(‘IOCTL’, socket, ‘SIOCSECSTATUS’)

u 0 SecDynamic TLS12 SHA1 DES3 ECDHE_RSA 168

u rc: 0

u Security Level: SecNone | SecStatic | SecDynamic

u Cipher Class: Null | SSLv2 | SSLv3 | TLS | TLS10 | TLS11 | TLS12

u Cipher Hash: Null | MD5 | SHA1 | SHA2 | SHA256 | SHA384

u Cipher Algorithm: Null | RC2 | RC4 | DES | FIPSDES | FIPS3DES | AES | AESGCM |

 AES128 | AES128GCM | AES256 | AES256GCM

u Cipher PK Algorithm: Null | RSA | DH_DSS | DH_RSA | DHE_DSS | DHE_RSA |

 ECDH_ECDSA | ECDHE_ECDSA | ECDH_RSA | ECDHE_RSA

u Cipher Key Length: integer

13

TLS changes

u SIOCSECCLOSE

u Socket(‘IOCTL’, socket, ‘SIOCSECCLOSE’, <msg>)

u If “msg” is specified, data pipeline is flushed and replaced with “msg”
string

14

TLS changes

u SIOCGCERTDATA

u Socket(‘IOCTL’, socket, ‘SIOCGCERTDATA’, <side>, <codes>)

u Socket(‘IOCTL’, socket, ‘SIOCGCERTDATA’, ‘partner’,

 ‘CN OU O L ST C’)

 0 6 CN='maint710.company.com' OU='Office' O=‘Corporate' L='Freehold' ST='New
Jersey' C='US'

u Socket(‘IOCTL’, socket, ‘SIOCGCERTDATA’, ‘partner’, ‘DN’)

 0 1 DN='CN=maint710.company.com,OU=Office,O=Corporate,L=Freehold,ST=New
Jersey,C=US'

15

TLS changes

u SIOCGCERTDATA
u side: local or partner

u codes: cert_body_der, cert_body_base64, cert_serial_number, cn,
cert_common_name, l, cert_locality, st, cert_state_or_province, c, cert_country, o,
cert_org, ou, cert_org_unit, dn, cert_dn_printable, cert_dn_der, cert_postal_code,
email, cert_email, cert_domain_component, sn, cert_surname, cert_street,
cert_title, cert_issuer_common_name, cert_issuer_locality,
cert_issuer_state_or_province, cert_issuer_country, cert_issuer_org,
cert_issuer_org_unit, cert_issuer_dn_printable, cert_issuer_dn_der,
cert_issuer_postal_code, cert_issuer_email, cert_issuer_domain_component,
cert_issuer_surname, cert_issuer_street, cert_issuer_title, cert_name,
cert_givenname, cert_initials, cert_generationqualifier, cert_dnqualifier, cert_mail,
cert_serialnumber, cert_issuer_name, cert_issuer_givenname, cert_issuer_initials,
cert_issuer_generationqualifer, cert_issuer_dnqualifier, cert_issuer_mail,
cert_issuer_serialnumber

16

IPv6 “Addressing 101”

u IPv6 addresses are 128 bits (16 bytes) (8 hextets)

u 2001::bad:c0ff:ee:bad:code

u 340 Undecillion addresses

u 340 Billion, Billion, Billion, Billion addresses

u ~ 6 Octillion addresses per person on Earth

u IPv4 addresses are 32 bits (4 bytes) (4 octets)

u 123.123.123.123

u ~ 4 Billion addresses

u <1 address per person on Earth

17

IPv6 changes

u Full IPv6 support

u Seamless

u Old code still works (no changes)

u Old code can leverage IPv6 DNS servers

u IPv6 additions non-invasive

u Full DNS support

u More friendly diagnostics

u Mixed IPv4/IPv6 sockets

u IUCV API icky-ness hidden

u 2 separate IUCV APIs, 1 socket abstraction

18

IPv6 changes

u Goal was to preserve REXX/Sockets API

u Create IPv4 or IPv6 sockets within the same socketset

u “AF_INET” already present in API, so adding “AF_INET6” is fair game

u Needed to extend existing API just a little to allow “AF_INET6” domain to be specified
where appropriate

u Socket(‘Resolve’, ‘www.facebook.com’) ß Returns IPv4 address

u Socket(‘Resolve’, ‘www.facebook.com’, ‘AF_INET6’) ß Returns IPv6 address

u Socket(‘Resolve’, ’www.facebook.com’, ‘AAAA’) ß Returns IPv6 address

19

IPv6 changes

u Deviated from z/OS REXX/Sockets:

u Socket “name” is:

u domain port ipaddress (Family Port Address)

u AF_INET 1234 xxx.xxx.xxx.xxx (3 fields)

u AF_INET6 1234 <flowid> xxxx:xxxx:xxxx:: <scopeid> (5 fields) (yuch)

u “flowid” not supported by z/VM API

u “scopeid” is barely supported

u Decided to use:

u AF_INET6 1234 xxxx:xxxx:xxxx:: (3 fields) (yay)

20

IPv6 changes

u IUCV API Type “4”

u Provides IPv6-only sockets

u Is there value keeping socketsets restricted to a single Address Family?

u Nope, not “natural”, not the BSD way

u Decided to “hide” the fact that all IPv6 sockets needed to be driven
using a separate IUCV path/API

u REXX Programmer simply creates IPv4 and/or IPv6 sockets and uses
them as intended (mix-and-match)

u No concern for the underlying API mess

21

IPv6 changes

u Better programming experience, but trickier to implement
u Socket(‘Select’, ‘Read 1 2 3 4 Write 1 2’, timeout)

u If socket 1 is IPv4 and socket 2 is IPv6, underlying code needs to drive 2
Select calls (1 through the API Type 3 path and 1 through the API Type 4
path)

u Whichever call finishes first needs to Cancel the other

u Socket(‘Select’, mask, ‘IDENTIFY’)

u If mask contained a mix of IPv4 and IPv6 sockets, which “messageID”
should be returned? (2 separate IUCV APIs, so 2 messageIDs)

u In such cases, I tie the 2 requests together and treat them as 1
(externally)

22

IPv6 changes

u Socket(‘Cancel’, messageID)

u Does the “right” thing

u No changes required to API (nor REXX programs)

u Socket(‘Select’, mask, options)

u Does the “right” thing

u No changes required to API (nor REXX programs)

23

IPv6 changes

u So, what *does* change in the API?

u A few extensions, but the API is stable

u family4 = “AF_INET”

u family6 = “AF_INET6”

u Socket(‘Socket’) ß Default is “AF_INET”, as usual

u Socket(‘Socket’, family4) ß “domain” may be specified, as usual

u Socket(‘Socket’, family6) ß “AF_INET6” is a new domain

u Socket(‘Bind’, socket, family4 port ‘inaddr_any’) ßIPv4 domain & address

u Socket(‘Bind’, socket, family6 port ‘in6ddr_any’) ßIPv6 domain & address

24

IPv6 changes

u IPv6 address can look like:

u Colon-delimited hextets:

u 2001:01db:dead:beef:cafe:feed:bad:f00d

u ::1

u ::

u 2001:1db:bad:beef::

u 2001:1db:6464::128.228.1.2 ß Yes, that’s valid

u ::ffff:128.228.1.2 ß “Mapped” addresses, too

25

IPv6 changes

u Socket(‘GetClientId’) ß “AF_INET” still the default
u Socket(‘GetClientId’, family4) ß “domain” may be specified
u Socket(‘GetClientId’, family6) ß “AF_INET6” is a new domain

u Socket(‘GetSockName’, socket) ß IPv4 *or* IPv6 address returned
u Socket(‘GetPeerName’, socket)
u Socket(‘Accept’, socket)
u Socket(‘RecvFrom’, …)

u Socket(‘Bind’, …) ß IPv4 *or* IPv6 address specified
u Socket(‘Connect’, …)
u Socket(‘SendTo’, …)

26

IPv6 changes

“domain” influences the behavior of:

u Socket(‘GetHostByAddr’, …)

u Socket(‘GetHostByName’, …)

u Socket(‘Resolve’, …)

27

IPv6 changes

u Socket(‘Trace’, ‘Resolver’)

Checking DNS servers for stanford.edu

Connecting to NameServer: 8.8.8.8, Time: 13:58:24

Question to NameServer: 8.8.8.8, Time: 13:58:24, ResolverTimeout: 5 seconds

001E0001 01000001 00000000 00000873 74616E66 6F726403 65647500 00FF0001

Answer from NameServer: 8.8.8.8, Time: 13:58:24

102B0001 81800001 00280000 00000873 74616E66 6F726403 65647500 00FF0001

C00C002E 00010000 070700A0 001C0802 00000708 5FF83775 5FD09FFD 26D30873

u Displaying the Question and Answer is nice, but we can do better than
hexadecimal

u Noticed quite a few DNS server-related issues, so better diagnostics were
warranted

28

IPv6 changes

u Socket(‘Trace’, ‘Resolver’)

u New diagnostic message to partially interpret Answer:

Flags: qr rd ra aa (8580); Answer: 6, Authority: 0, Additional: 0

u Helpful, but sometimes deciphering the Answer section is necessary

u “I received 6 Answers to my DNS Query, but none of them seem to be
the one I was seeking, so what *were* the Answers?”

u (In one of my test cases, I was seeking an AAAA record from a DNS server
and I was receiving a troubling response. I needed more data.)

29

IPv6 changes

u Socket(‘Trace’, ‘Resolver ANY’)

Flags: qr rd ra aa (8580); Answer: 6, Authority: 0, Additional: 0

>?> cuny.edu, type = ANY, class = IN

>A> cuny.edu. 3600 NS d-395h-5-dcdns-2.cis.

>A> cuny.edu. 3600 MX 10 mail-relay.cuny.edu.

>A> cuny.edu. 3600 A 172.18.192.200

>A> cuny.edu. 3600 TXT "v=spf1 ip4:128.228.0.167 ..."

>A> cuny.edu. 3600 NAPTR (not formatted)

>A> cuny.edu. 3600 SOA 555w-dnsco.cuny.edu. ...

u Ok, no AAAA Answer returned, Authoritative Answer (“aa”), clear as day: no IPv6 address.
(In my test case, this was due to lack of IPv6 support in the Name Server.)

30

IPv6 changes

u Socket(‘Trace’, ‘Resolver Any’)

u Socket(‘Resolve’, ‘Stanford.edu’) ß I used 8.8.8.8 for
NSinterAddr

Flags: qr rd ra (8180); Answer: 40, Authority: 0, Additional: 0

>?> stanford.edu, type = ANY, class = IN

>A> stanford.edu. 1799 RRSIG (not formatted)

>A> stanford.edu. 1799 AAAA 2607:f6d0:0:925a::ab43:d7c8

>A> stanford.edu. 21599 SOA argus.stanford.edu. hostmaster.

stanford.edu. 2020188159 1200 600 1296000 1800

… so many more Answers

31

IPv6 changes

u Socket(‘Translate’, …)

u “To_IPv6_Address”

u Convert 16-byte hexadecimal IPv6 to (Printable) character format (“ntop”)

u Convert Printable IPv6 address to 16-byte hexadecimal format. (“pton”)

u Hex: FF020000000000000000000000000001

u Char: ff02::1

u “To_SockAddr_In6”

u Convert 28-byte hexadecimal sockaddr_in6 to Printable “Name”

u Convert Printable “Name” to 28-byte hexadecimal format sockaddr_in6

u Hex: 0013000100000000

u Char: AF_INET6 0 ::1

32

IPv6 changes

u IPv6 addresses supported in:

u ETC HOSTS

u As a result, we can eliminate the PL/X code (DMSRXR)

u TCPIP DATA

u Full support for IPv6 Name Servers

33

IPv6 changes

u GetAddrInfo and GetNameInfo were *not* added

u Not convinced they are needed

u z/OS sample:

 Socket("GetAddrInfo","MVS150",54777,

 "AI_ALL AI_CANONNAMEOK AI_NUMERICSERV AI_V4MAPPED",

 "AF_INET6","SOCK_STREAM","IPPROTO_TCP");

u Yuch

u Convince me otherwise (uh, see next slide...)

34

IPv6 Changes

u One look at a complicated application and I changed my mind and coded
Socket(‘GetAddrInfo’,…)

u Pared down, it’s quite useful (easily code AF-agnostic programs)
u A client can easily establish IPv6 *or* IPv4 connections to a target server

depending on the target’s DNS records

u Client: Socket('GetAddrInfo', server, port, 'AF_UNSPEC')

u Returns: rc fqdn name name name name …
u “name”: AF_INETx 12345 IP_address

u Loop on names, trying to establish a Connection

u Server: Socket('GetAddrInfo', , port, 'AF_UNSPEC AI_PASSIVE')

u Server then feeds “name” data to a Socket/Bind/Listen combo

u Socket(‘GetNameInfo’,…) also added for symmetry

35

GetAddrInfo

u Recognized the value of this function call
u Value: Address Family agnostic code (AF_INET, AF_INET6)

u Implemented without socket “Type” and “Protocol” options
u These options were of limited value

u AI_ADDRCONFIG option not implemented
u Too much controversy over correct implementation

u “Avoid DNS lookups” versus “Return IPx information only if IPx address is
configured on an interface”

u Limited value

u Stack really doesn’t care (V4-mapped addresses)

u Slim version of GetAddrInfo quite elegant

36

Prior Client/Server scenarios

u Socket(‘Initialize’, …)

u Socket(‘Socket’, ‘AF_INET’, …) /* Address Family “hard-coded” */

u /* “NAME” triplet completely specified: family port address */

u Socket(‘Connect’, socket, ‘AF_INET 5678 123.123.123.123’)

u Socket(‘Initialize’, …)

u Socket(‘Socket’, ‘AF_INET’, …)

u /* “Bind” address (passive, loopback or IP) “hard-coded” */

u Socket(‘Bind’, socket, ‘AF_INET 5678 123.123.123.123’)

u Socket(‘Listen’, socket, 10)

u Socket(‘Select’, …)

u Socket(‘Accept’)

37

GetAddrInfo (Client Scenario)

u A client *may* wish to connect to a server, preferring its IPv6 address
if available, but use IPv4 address otherwise

u We’ll use GetAddrInfo with the AF_UNSPEC option to request both
IPv6 and IPv4 information for a given server/port combination (port is
optional, of course)

u Specifying port causes the port to appear in the results

38

GetAddrInfo (Client Scenario)

Parse Value Socket('GetAddrInfo', server, port, 'AF_UNSPEC') With rc fqdn names

connected = 0

If rc=0 Then Do Until connected

 If names="" Then Exit 1

 /* Parse each "NAME" triplet from GetAddrInfo */

 Parse Var names ai_family ai_port ai_address names

 /* Attempt to create a socket with the correct Address Family */

 Parse Value Socket('Socket', ai_family) With rc socket .

 If rc=0 Then Do

39

GetAddrInfo (Client Scenario)

 /* Socket creation successful, now try a connect */

 Parse Value Socket('Connect', socket, ai_family ai_port ai_address) With rc .

 If rc=0 Then connected = 1

 Else rc = Socket('Close', socket)

 End

End

40

GetAddrInfo (Server Scenario)

u A server may wish to offer services on both IPv6 and IPv4 interfaces

u We’ll use GetAddrInfo with the AF_UNSPEC option to request both
IPv6 and IPv4 information

u We’ll omit the server (host) parameter, since we only want our “0”
addresses (::0 and 0.0.0.0) - “bind” to ANY IP address

u Other examples may wish the server to Bind to specific IP addresses

u We specify the port, because we want it to appear in the results

u We also use the AI_PASSIVE option because we are interested in
using the results in a subsequent Bind operation (without AI_PASSIVE,
the loopback addresses ::1 and 127.0.0.1 would be returned, since
we are omitting the host parameter)

41

GetAddrInfo (Server Scenario)
Parse Value Socket('GetAddrInfo', , port, 'AF_UNSPEC AI_PASSIVE') With rc . names

Do While names<>""

 Parse Var names ai_family ai_port ai_address names

 If ai_family<>"" Then Do

 Parse Value Socket('Socket', ai_family) With rc socket .

 If rc=0 Then Do

 rc = Socket('Bind', socket, ai_family ai_port ai_address)

 If rc=0 Then Do

 Say "Socket" socket "bound to" ai_address".."ai_port

 Leave

 End

 End

 End

End /* “Normal” program logic follows … */

rc = Socket(‘Listen’, socket, ‘10’)

42

GetAddrInfo (Client, Server, IPv6)

u After using GetAddrInfo and the snippets of code above, the
remainder of the client and server code is unchanged

u GetAddrInfo makes it a little easier to “IPv6 enable” existing code

u AI_V4MAPPED option serves as a nice bridge

u IP address checking/manipulation will need to be re-visited, however

u Socket(‘Resolve’, …) and Socket(‘Translate’, …) may offer relief

u (The thought here would be to use Resolve to translate IPv4 *or* IPv6
addresses to FQDNs, then use FQDNs for authorization/authentication
checking, instead of messing with IP addresses)

43

GetAddrInfo

u AI_V4MAPPED option allows translation of IPv4 addresses (and DNS results) into IPv6
“mapped” addresses:

Socket('GetAddrInfo','10.27.1.12', 443, 'AI_CANONNAME AI_V4MAPPED AF_INET6’)

 "0 server.company.com AF_INET6 443 ::ffff:10.27.1.12"

u Resolve can be used to “un-map” an address:

Socket(‘Resolve’, ‘::ffff:10.27.1.12’)

 “0 10.27.1.12 SERVER.COMPANY.COM” ß Yeah, it’s uppercase (sorry)

44

Fun with Translate and IPv6

u Use Socket(‘Translate’) to convert an IPv6 address in non-standard,
or un-compacted format into “Canonical” form (RFC5952)

Parse Value Socket('Translate','ff02:0:0:00:000::1','To_IPv6_Address') With rc len hex_IP

Parse Value Socket(‘Translate’, hex_IP, ‘To_IPv6_Address’) With rc len char_IP

Say char_IP

ff02::1

u Same technique can be used for IPv4 addresses (use ‘To_IPv4_Address’)

45

Adding TLS (Client and Server sides)

/* Determine if TLS label (and an SSL server) is available */

Parse Value Socket('IOCTL', socket, 'SIOCTLSQUERY', tls_label) ,

 With rc errno text

If rc<>0 Then TLS=0

Else TLS = 1

(Note: Errors from SYSTEMSSL are included with descriptive text;
rc=40xxx)

46

Adding TLS (Client side)

/* Connect was successful, now try to negotiate TLS */

If TLS Then Do

 options = ‘NoSSLv2’

 /* options = ‘NoSSLv2 fqdn=fred.com FullCheck ipv4=0.0.0.0 Alert’ */

 Parse Value Socket('IOCTL', socket, 'SIOCSECCLIENT', tls_label, options) ,

 With rc .

 If rc<>0 Then Say TcpError('SIOCSECCLIENT')

 Parse Value Socket('IOCTL', socket, 'SIOCSECSTATUS') With rc setting type .

 Say "TLS setting is:" setting

End

47

Adding TLS (Server side)

/* Accept has completed and returned “new_socket”, try TLS now */

If TLS Then Do

 Parse Value Socket('IOCTL', new_socket, 'SIOCSECSERVER', ,

 tls_label, 'ClientCertCheck=Preferred') With rc errno text

 If rc<>0 Then Say "TLS handshake failed:" text

 Parse Value Socket('IOCTL', new_socket, 'SIOCSECSTATUS') ,

 With rc setting .

 Say "TLS setting is:" setting

End

48

Adding TLS (Client and Server sides)

If setting="SecDynamic" Then Do /* Or: If setting<>”SecNone” Then Do */

 Parse Value Socket('Ioctl', socket, 'SIOCGCERTDATA', 'partner', 'DN') With rc count dn

 If count=1 Then Say “Partner DN:” dn

End

Note: “DN” includes “CN” data (CN is typically FQDN, so it may be more useful)

49

Adding TLS

u Just 2 or 3 Socket() calls to add to client and server

u Certificate management remains the only challenge

50

REXX/Sockets update

u TLS update – 260 lines (2018)

u New TLS IOCTLs + IPv6 update – 12,000 lines (2020)

u Major success was removing the addressability issue, thus paving the
way for future updates

u Like: Fixing the Mutex issue once and for all!

u Amazing what a little spare time and incentive will do!

51

Thank you!!!

52

