Storage System
High- Availability & Disaster Recovery Overview
[638]

John Wolfgang
Enterprise Storage Architecture & Services

jwolfgang@vicominfinity.com
26 June 2014
Agenda

- **Background**
 - Application-Based Replication
 - Storage-Based Replication
 - Tape Replication
 - Point-in-Time Replication
 - Synchronous Replication
 - Asynchronous Replication
 - Automation
- Replication Examples
- Key Questions for Any Solution
My Background

- **West Virginia University**
 - BS Electrical Engineering
 - BS Computer Engineering

- **Carnegie Mellon University**
 - MS Electrical and Computer Engineering
 - Data Storage Systems Center

- **Lockheed Martin & Raytheon**

- **IBM**
 - Development (Tucson) - Software Engineer – 10 years
 - Data replication, disaster recovery, GMU, eRCMF, TPC for Replication
 - Global Support Manager (New York City) – Morgan Stanley – 2 years
 - IBM Master Inventor

- **Vicom Infinity**
 - Enterprise Storage Architecture and Services – 1+ years
Why are High Availability & Disaster Recovery Important?

- Information is your most important commodity – need to protect it
- What happens to your company if you don’t have access to your production data for a minute? An hour? A day? A month?
- How much money does your company lose every minute?
 - Amazon.com loses $66,240 per minute (Forbes.com – 8/19/2013)
 - Ebay.com loses $120,000 per minute (ebay.com)
Lessons Learned from Previous Disasters

- Rolling disasters happen
- Distance is more important
- Redundancy may be smoke and mirrors
- If you have not successfully tested your exact DR plan, you do not have a DR plan
- Automate as much as possible
 - Increase dependency on automation and decrease dependency on people
 - Automation provides the ability to test over and over until perfect
 - Automation will not deviate from procedures
 - Automation will NOT make mistakes (even under pressure!)
 - Automation will not have trouble getting to the DR site
- Recovery site Considerations
 - Site capacity (MIPs and TBs) needs to be sized to handle the production environment
 - What is the DR Plan after successful recovery from disaster
 - Disasters may cause multiple companies to recover and that puts stress on the commercial business recovery services
Replication Beyond Disaster Recovery

Disaster Recovery/Business Continuity
- Minimize data loss
- Minimize restart time
- Increase distance
- Enable automation

Availability Improvements
- Backup Window
- Tape Backup
- Data Migration
- Archival

Operational Efficiency
- Data Mining
- Content Distribution
- Software Testing
Some Definitions

- **Recovery Point Objective (RPO)**
 - How much data can you tolerate losing during a disaster

- **Recovery Time Objective (RTO)**
 - How much time will it take to get your systems up and running again after a disaster

Replication Method

- **Point-in-Time**
 - App-Based
 - Storage-Based

- **Continuous**
 - Synchronous
 - App-Based
 - Storage-Based
 - Asynchronous
 - App-Based
 - Storage-Based
7 Tiers of Business Recovery Options

Key Customer Objectives:
RTO – Recovery Time Objective
RPO – Recovery Point Objective

Mission Critical Data

Tier 7 - RPO=Near Zero, RTO <1Hr.
Server/Workload/Network/Data
Automatic Site Switch

Tier 6 - RPO=Near Zero, RTO= Manual - Disk or Tape
Data Mirroring

Tier 5 - RPO > 15 min. RTO= Manual; PiT or
SW Data Replication

Tier 4 - Data Base Log Replication &
Host Log Apply at Remote

Tier 3 – Electronic Tape Vaulting

Tier 2 – PTAM & Hot Site

Tier 1 – PTAM

Point-in-time Backup to Tape

Active
Secondary Site

RPO: 4+ hrs
RTO: 4+ hrs

RPO: 24+ hrs
RTO: Days

Less Critical Data

Cost of Ownership
(Servers/Network Bandwidth/Storage)

Time to Recover – How quickly is an application recovered after a disaster?

*PTAM – Pickup Truck Access Method

© 2014 Vicom Infinity
Agenda

- Background

- **Application-Based Replication**

 - Storage-Based Replication
 - Tape Replication
 - Point-in-Time Replication
 - Synchronous Replication
 - Asynchronous Replication

- Automation

- Replication Examples

- Key Questions for Any Solution
Application-Based vs. Storage-Based Replication (1)

Application/File/Transaction Based
- Specific to application/file system/database
- Generally less data is transferred
 - Lower telecommunication costs
- No coordination across applications, FSs, DBs, etc.
- Applications change - replication may need to change
- May forget “other" related data necessary for recovery
- With many transfers occurring in a corporation, it may be difficult to determine what is where in a disaster. RTO/RPO may not be repeatable, auditing may be difficult
- Many targets possible (ex. millions of cell phones)
Application-Based Replication Examples

DB2 HADR
- High availability solution for both partial and complete site failures
- Log data is shipped and applied to standby database
 - One or more standby databases
- If primary database fails, applications are redirected to the standby database
- Standby database takes over in seconds
 - Avoids database restart upon a partial error

LVM Mirroring
- Create more than one copy of a physical partition to increase data availability
- Handled at the logical volume level
- If a disk fails, can still have access to the data on an alternate disk
- Remote LVM mirroring enables use of disks located at multiple locations
 - Replication between multiple storage systems via a Storage Area Network (SAN)
Agenda

- Background
- Application-Based Replication

- **Storage-Based Replication**
 - Tape Replication
 - Point-in-Time Replication
 - Synchronous Replication
 - Asynchronous Replication

- Automation

- Replication Examples

- Key Questions for Any Solution
Storage-Based – Block Level Replication

- Independent of application, file systems, databases, etc.
- Common technique for corporation
 - Managed by operations
- Generally more data transferred
 - Higher telecommunication costs
- Consistency groups yield cross volume/storage subsystem data integrity/consistency
- Independent of application changes.
 - Mirror all pools of storage
- Consistent repeatable RPO.
- RTO depends on server/data/workload/network
- Generally a handful of targets
- Specific to data replication technique (tied to specific architecture & devices that support it)
What Does Data Consistency Really Mean?

- For storage-based replication, we are talking about “power fail” consistency

- Typical Database transaction:
 1. Update log – database update is about to occur
 2. Update database
 3. Update log - database update complete

- Host is very careful to do each of the transactions in order
 - This provides power fail data consistency

- BUT, these transactions are likely done to different volumes possibly on different control units

- Failure to be careful about transaction order results in loss of data consistency and data may become unusable

- In order to ensure data consistency at secondary site, dependent writes must be done in order

- How does a storage system know which writes are dependent?
 - It doesn’t
 - What it does know is that writes that are done in parallel are not dependent
 - Any writes NOT done in parallel are assumed to be dependent

- This is exacerbated for asynchronous replication
Storage-Based Replication Techniques

Tape
- Pickup Truck Access Method (PTAM)
- Virtual Tape Replication

Disk
- Point-in-Time Copy
- Synchronous Replication
- Asynchronous Replication
- Three-site Replication (Synchronous & Asynchronous)

Automation
- Hyperswap
- Tivoli Storage Productivity Center for Replication
- Globally Dispersed Parallel Sysplex (GDPS)
Tape Replication - PTAM

- Backups created and dumped to physical tapes
 - Recovery Point Objectives quite high – 24 hours at best?
- Tapes are literally picked up by a truck and taken to another location
 - Hot site
 - Storage only
 - Recovery Time Objective fairly high in both cases
- Lower cost and simpler option than disk replication
Tape Replication – Virtual Tape Grid

- Virtual Tape Servers appear to hosts as standard tape volumes
 - May or may not actually contain tape drives and tapes
- Multiple clusters can be put together into a tape grid
- Tape volumes can be selectively replicated to one or more other clusters
- Tape volumes can be accessed through any cluster in the grid
 - Whether or not the tape volume physically resides on that cluster
- Certain virtual tape server models have physical tape libraries behind them that can offload volumes to actual tapes
- Hybrid with characteristics of both tape backup and replication
 - Recovery Point Objective much better than PTAM
7 Tiers of Business Recovery Options

Key Customer Objectives:
RTO – Recovery Time Objective
RPO – Recovery Point Objective

Mission Critical Data

Tier 7 - RPO=Near Zero, RTO <1Hr.
Server/Workload/Network/Data
Automatic Site Switch

Tier 6 - RPO=Near Zero, RTO= Manual - Disk or Tape
Data Mirroring

Tier 5 - RPO > 15 min. RTO= Manual; PiT or
SW Data Replication

Tier 4 - Data Base Log Replication &
Host Log Apply at Remote

Tier 3 – Electronic Tape Vaulting

Tier 2 – PTAM & Hot Site

Tier 1 – PTAM

Cost of Ownership (Servers/Network Bandwidth/Storage)

Time to Recover – How quickly is an application recovered after a disaster?

*PTAM – Pickup Truck Access Method
Point-in-Time vs. Continuous Replication

Point-in-Time

Local copy of data

Data “Frozen”

- Provides protection against logical corruption, user error
- Data is not the most current

Continuous Replication

Remote copy of the data

- Provides protection against primary storage system or data center issue
- Continuously updated
- Data is always current (or close to it)
- Corruption/Errors on the primary site will be transferred to the secondary
Point-in-Time Copy

- Internal to Storage System
- New copy created and available immediately
- Possible to read & write to both volumes
- No-Copy
 - No data is copied to Target unless updated on the Source
- Copy on Write
 - Data must be copied to Target before being updated on Source
- Background Copy
 - All data from Source copied to Target
 - Relationship typically ends when copy is complete
- Incremental Copy
 - Full background copy is done the first time
 - Only changes copied subsequently
- Space Efficient/Thin Provisioned
 - Only allocate space as it is used
Synchronous Replication Overview

- **Server Write**
- **Write Acknowledge**
- **Write to Secondary**
- **Write Acknowledged to Primary**
- Data on secondary storage system is always identical to primary
 - Recovery Point Objective of 0
- Standard implementation for many storage vendors
- There is an impact on application I/Os
 - Dependent on distance between primary and secondary
 - Distance to 300 km
 - Bandwidth must be sufficient for peak
- Data Freeze technology keeps all pairs in consistency group consistent
 - Requires automation to guarantee consistency across multiple storage systems
Practice How you Recover and Recover How you Practice

- Proper Disaster Recovery Tests require time & effort & commitment
- If you haven’t successfully tested your exact DR plan, you don’t have a DR plan
- A DR test may require you to stop data replication temporarily
- Use Practice Volumes to test properly while continuing replication
- Practice Volumes can also be used for other activities
 - Development, testing, data analytics
- Make sure you always recover to the Practice Volumes – even in a real disaster
Synchronous Replication with Practice Volumes

- Standard synchronous replication as the basis
- Typical synchronous replication requires replication outage for DR testing
- Practice volumes provide capability to continue replication during DR testing
- Data is recovered to secondary storage system
- Point-in-Time copy created on secondary storage system
- Replication is restarted while access to H2 volume still available
- Should recover in actual disaster using the same method
Asynchronous Replication Overview

- **Server Write**
- **Write Acknowledge**
- **Write to Secondary**
- **Write Acknowledged to Primary**
Asynchronous Replication – No Consistency

- Asynchronous transfer of data updates
- No distance limitation
- Little impact on application I/Os
- Secondary not guaranteed consistent
 - No write ordering
 - No consistent data sets
 - Hosts/Applications must be shut down to provide consistency
- Most useful for migration
- Can transition to/from Synchronous replication
Asynchronous Replication – Two Volumes

- Asynchronous transfer of data updates
 - Recovery Point Objective > 0
- No distance limitation
- Little impact on application I/Os
- Data consistency maintained via:
 - Write ordering
 - Consistent data sets
- If bandwidth is not sufficient for peak, data will back up on the primary
 - Some vendors require extra cache
Asynchronous Replication – Three Volumes

- Asynchronous transfer of data updates
 - Recovery Point Objective > 0
- No distance limitation
- Little impact on application I/Os
- Data consistency created using 3rd volume
- Consistency coordinated by primary storage system
- If bandwidth is not sufficient for peak, RPO will grow and “catch up” later
Asynchronous Replication With Practice Volumes

- Standard asynchronous replication as the basis
 - Could be any of the consistent variants
- Typical asynchronous replication requires replication outage for DR testing
- Practice volumes provide capability to continue replication during DR testing
- Data is recovered to secondary storage system in typical manner
- Point-in-Time copy created on secondary storage system
- Replication is restarted while access to H2 volume still available
- Should recover in actual disaster using the same method
Asynchronous Replication – z/OS Interaction

- Asynchronous transfer of data updates
 - Recovery Point Objective > 0 but very low (~seconds)
- No distance limitation
- Little impact on application I/Os
- Managed by System z
- Multiple Storage vendors

![Diagram showing Asynchronous Replication](image)

- Source z Host
- Primary Storage System
- Server Write
- Write Acknowledge
- Asynchronous Replication Controlled by SDM on Target System z Host
- Target z Host
- Secondary Storage System
Asynchronous transfer of data updates
- Recovery Point Objective typically higher than previously discussed implementations
- RPO is 2x the “cycling period”
- Can tolerate lower network bandwidth

Little impact on application I/Os

Periodic consistent PiT copies are created from primary volumes

PiT copies are replicated to secondary volumes
- Does not require a consistent replication mechanism

After copy is complete, PiT copies are created from secondary volumes for protection
Three-Site Replication - Cascading

- Combination of Synchronous & Asynchronous replication techniques
- Synchronous replication to provide High Availability at metro distances
 - Protect against storage system & data center disasters
- Asynchronous replication to provide disaster recovery capability at global distances
 - Protect against regional disasters
- Ability to switch production between primary and secondary systems
- Incremental resynchronization between primary and tertiary if secondary lost
- Requires automation to handle the various transitions
Three-Site Replication – Multi-Target

- Combination of Synchronous & Asynchronous replication techniques
- Synchronous replication to provide High Availability at metro distances
 - Protect against storage system & data center disasters
- Asynchronous replication to provide disaster recovery capability at global distances
 - Protect against regional disasters
Agenda

- Background

- Application-Based Replication

- Storage-Based Replication
 - Tape Replication
 - Point-in-Time Replication
 - Synchronous Replication
 - Asynchronous Replication

- Automation

- Replication Examples

- Key Questions for Any Solution
7 Tiers of Business Recovery Options

Key Customer Objectives:
- RTO – Recovery Time Objective
- RPO – Recovery Point Objective

Mission Critical Data

Tier 1 – PTAM*
- RPO: 15 Min.
- RTO: 1-4 Hr.

Tier 2 – PTAM & Hot Site
- RPO: 4-8 Hr.
- RTO: 4-8 Hr.

Tier 3 – Electronic Tape Vaulting
- RPO: 8-12 Hr.
- RTO: 8-12 Hr.

Tier 4 – Data Base Log Replication & Host Log Apply at Remote
- RPO: 24+ hrs
- RTO: 24+ hrs

Tier 5 – RPO > 15 min. RTO= Manual; PiT or SW Data Replication
- RPO: 24+ hrs
- RTO: Days

Tier 6 - RPO=Near Zero, RTO= Manual - Disk or Tape
- Data Mirroring

Tier 7 - RPO=Near Zero, RTO <1Hr.
- Server/Workload/Network/Data Automatic Site Switch

Cost of Ownership (Servers/Network Bandwidth/Storage)
- Tier 7
 - Cost: 1000
- Tier 6
 - Cost: 700
- Tier 5
 - Cost: 400
- Tier 4
 - Cost: 100
- Tier 3
 - Cost: 50
- Tier 2
 - Cost: 10
- Tier 1
 - Cost: 1

Time to Recover – How quickly is an application recovered after a disaster?

*PTAM – Pickup Truck Access Method
Hyperswap for Synchronous Replication Configurations

- Triggered when there is a problem writing or accessing the primary storage devices
- Swap from using primary storage devices to secondary storage devices
- Transparent to applications (brief pause on the order of seconds)

Steps
- Physically switch the secondary storage devices to be primary and allow access
- Logically switch the OS internal pointers in the UCBs
- Applications are not aware that they are now using the secondary devices

No Shutdown, No Configuration Changes, No IPL

Managed by Automation software (GDPS, TPC for Replication)

Planned Hyperswap
- Use for maintenance, production site move, migration

Unplanned Hyperswap
- Automated to protect against storage system failure
Tivoli Storage Productivity Center for Replication

- Automate and simplify complex data replication tasks
- Control multiple replication types and storage systems from a single pane
 - Including CKD and FB volumes
- Added Error Protection
- Added Ease of Use
- Facilitates DR Testing and DR Recovery
- Enables Basic Hyperswap, Hyperswap, Open Hyperswap
- GUI-based
 - Operational control of replication environment via a GUI rather than DSCLI scripts or TSO commands
 - Also provides a CLI
- Linux, Windows, AIX, z/OS
Globally Dispersed Parallel Sysplex (GDPS)

- Enables Business Recovery Tier 7 capability
- Manage all forms of replication
- Manage Hyperswap
- Drive down RTO through automation
- Scripting Capability provides ability to automate the recovery process at the DR site
 - Enable CBU
 - Automate Recovery of Disk systems
 - Automate IPL of LPARs
 - Automate application startup
7 Tiers of Business Recovery Options

Key Customer Objectives:
- **RTO** – Recovery Time Objective
- **RPO** – Recovery Point Objective

Mission Critical Data

Tier 7 - RPO = Near Zero, RTO < 1Hr.
- Server/Workload/Network/Data
- Automatic Site Switch

Tier 6 - RPO = Near Zero, RTO = Manual - Disk or Tape
- Data Mirroring

Tier 5 - RPO > 15 min. RTO = Manual; PiT or SW Data Replication

Tier 4 - Database Log Replication & Host Log Apply at Remote

Tier 3 – Electronic Tape Vaulting

Tier 2 – PTAM & Hot Site

Tier 1 – PTAM

Cost of Ownership (Servers/Network Bandwidth/Storage)

- Tier 1
- Tier 2
- Tier 3
- Tier 4
- Tier 5
- Tier 6
- Tier 7

Time to Recover – How quickly is an application recovered after a disaster?

Tier 1 – PTAM: 15 Min.
Tier 2 – PTAM & Hot Site: 1-4 Hr.
Tier 3 – Electronic Tape Vaulting: 4-8 Hr.
Tier 4 – Database Log Replication & Host Log Apply at Remote: 8-12 Hr.
Tier 5 – RPO > 15 min. RTO = Manual; PiT or SW Data Replication: 12-16 Hr.
Tier 6 – RPO = Near Zero, RTO = Manual - Disk or Tape Data Mirroring: 24 Hr.
Tier 7 – RPO = Near Zero, RTO < 1Hr. Server/Workload/Network/Data Automatic Site Switch: Days

PTAM – Pickup Truck Access Method
Data Replication Considerations

- Synchronous solutions do not work at distance
- Asynchronous solutions have data loss and potential problems managing consistency, particularly across different storage platforms
- Maximizing use of long distance link is critical for many customers
 - Smaller customers may want to purchase extended links which meet maximum transfer requirements for a shift, not their 15 second peak
- Being able to test, recover data at the recovery site, and replicate back to the production site after resolution is critical
 - If you have not successfully tested your DR procedures, you do NOT have DR procedures
 - Practice how you recover, and recover how you practice
Agenda

- Background

- Application-Based Replication

- Storage-Based Replication
 - Tape Replication
 - Point-in-Time Replication
 - Synchronous Replication
 - Asynchronous Replication

- Automation

- Replication Examples

- Key Questions for Any Solution
Fit For Purpose – Two & Three Site Replication

- Tailor your solution to your needs (and budget)
- Synchronous replication for everything
- Three-site Synchronous/Asynchronous only for your most important data

Source Host

Synchronous

Primary Storage System

Secondary Storage System

Asynchronous

PiT Copy

Tertiary Storage System
Fit For Purpose – Asynchronous Replication

- Save money and reduce complexity by replicating some data consistently and other data with no consistency
- Make sure you understand the ramifications of these decisions
Low Cost Asynchronous with Consistency

- Create periodic consistent PiT copies of primary production volumes
- Use asynchronous replication with no consistency to copy all data to secondary
- When all the data is copied, the secondary volumes are consistent
- Lower network bandwidth requirements
- Avoids extra volume at secondary site
- Use Space Efficient PiT copy to conserve even more space
- Useful for testing, data analytics, or high RPO requirements
Four Site Replication

- Synchronous replication to provide high-availability
- Asynchronous cascaded replication to provide global distance DR capability
- Cascaded asynchronous leg to provide another copy of data
 - Used for development, testing, data analytics
 - Only consistent periodically
PIT Copies for Tape Backup

- Create periodic PiT copies of primary production volumes
- Dump these PiT copies to tape for backups
- Avoids the tape backup software accessing production volumes
- Use minimum space by employing Space Efficient PiT copies
Key Questions for Any Potential Solution

- How does the solution provide cross volume/cross subsystem data integrity/data consistency?
- What is the impact to the primary application I/O?
- What happens if data replication fails or slows down?
- Interoperability with other data replication solutions?
- Cost of installing & maintaining solution?
- Do solutions provide “concurrent maintenance”?
- What flexibility does the solution provide?
- If I recover to the secondary site, how do I replicate back to the primary?
- If I use different “types" of disk subsystems, after recovery can I maintain my QoS to my users?
Thank you!

John Wolfgang
Enterprise Storage Architecture & Services

jwolfgang@vicominfinity.com
26 June 2014
For More Information please contact...

Len Santalucia, CTO & Business Development Manager
Vicom Infinity, Inc.
One Penn Plaza – Suite 2010
New York, NY 10119
212-799-9375 office
917-856-4493 mobile
lsantalucia@vicominfinity.com

About Vicom Infinity
- Account Presence Since Late 1990’s
- IBM Premier Business Partner
- Reseller of IBM Hardware, Software, and Maintenance
- Vendor Source for the Last 8 Generations of Mainframes/IBM Storage
- Professional and IT Architectural Services
- Vicom Family of Companies Also Offer Leasing & Financing, Computer Services, and IT Staffing & IT Project Management